The annual average insolation for a fixed solar panel in city A is 350 W/m?. On the other hand, city B has a figure of 300 W/m?. For both locations, the solar panel has the capability to convert 17% of the incident energy into electricity. Average annual electricity in City A is 13 000 kWh with an average cost of $0.4/kWh, while in city B, it is 10 000 kWh at a cost of $ 0.75/kWh. For City A, a. Determine the area of the solar panel needed in order to suffice the average electrical needs of a residence. b. Determine the area of the solar panel needed in order to suffice the average electrical needs of a residence in City B. c. Determine the price per square meter of solar panel in City A if the device has a lifetime of 20 years. Assume that the electricity costs are constant throughout the period.

Structural Analysis
6th Edition
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:KASSIMALI, Aslam.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
The annual average insolation for a fixed solar panel in
city A is 350 W/m2. On the other hand, city B has a figure
of 300 W/m?. For both locations, the solar panel has the
capability to convert 17% of the incident energy into
electricity. Average annual electricity in City A is 13 000
kWh with an average cost of $0.4/kWh, while in city B, it
is 10 000 kWh at a cost of $0.75/kWh.
For City A,
a. Determine the area of the solar panel needed in order
to suffice the average electrical needs of a residence.
b. Determine the area of the solar panel needed in order
to suffice the average electrical needs of a residence in
City B.
c. Determine the price per square meter of solar panel in
City A if the device has a lifetime of 20 years. Assume
that the electricity costs are constant throughout the
period.
d. Determine the price per square meter of solar panel in
City B if the device has a lifetime of 20 years. Assume
that the electricity costs are constant throughout the
period.
Transcribed Image Text:The annual average insolation for a fixed solar panel in city A is 350 W/m2. On the other hand, city B has a figure of 300 W/m?. For both locations, the solar panel has the capability to convert 17% of the incident energy into electricity. Average annual electricity in City A is 13 000 kWh with an average cost of $0.4/kWh, while in city B, it is 10 000 kWh at a cost of $0.75/kWh. For City A, a. Determine the area of the solar panel needed in order to suffice the average electrical needs of a residence. b. Determine the area of the solar panel needed in order to suffice the average electrical needs of a residence in City B. c. Determine the price per square meter of solar panel in City A if the device has a lifetime of 20 years. Assume that the electricity costs are constant throughout the period. d. Determine the price per square meter of solar panel in City B if the device has a lifetime of 20 years. Assume that the electricity costs are constant throughout the period.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Solar energy
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Structural Analysis
Structural Analysis
Civil Engineering
ISBN:
9781337630931
Author:
KASSIMALI, Aslam.
Publisher:
Cengage,
Structural Analysis (10th Edition)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Sustainable Energy
Sustainable Energy
Civil Engineering
ISBN:
9781337551663
Author:
DUNLAP, Richard A.
Publisher:
Cengage,
Traffic and Highway Engineering
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning