The accompanying table contains data on the weight, in grams, of a sample of 50 tea bags produced during an eight-hour shift. Complete parts (a) through (d). E Click the icon to view the data table. a. Is there evidence that the mean amount of tea per bag is different from 5.5 grams? (Use a= 0.05.) State the null and alternative hypotheses. More Info Ho: µ = 5.5 5.5 (Type integers or decimals.) Tea Bag Weight (in grams) Determine the test statistic. 5.66 5.46 5.42 5.41 5.53 5.32 5.53 5.53 5.56 5.67 5.47 5.47 5.27 5.43 5.58 5.42 5.54 5.54 5.56 5.61 5.42 5.52 5.47 5.41 5.47 5.43 5.62 5.58 The test statistic is 5.52 5.32 5.48 5.54 (Round to two decimal places as needed.) 5.77 5.58 5.56 5.48 5.33 5.49 5.55 5.58 5.61 5.46 5.43 5.24 5.55 5.62 5.49 5.56 5.67 5.37 Print Don
Continuous Probability Distributions
Probability distributions are of two types, which are continuous probability distributions and discrete probability distributions. A continuous probability distribution contains an infinite number of values. For example, if time is infinite: you could count from 0 to a trillion seconds, billion seconds, so on indefinitely. A discrete probability distribution consists of only a countable set of possible values.
Normal Distribution
Suppose we had to design a bathroom weighing scale, how would we decide what should be the range of the weighing machine? Would we take the highest recorded human weight in history and use that as the upper limit for our weighing scale? This may not be a great idea as the sensitivity of the scale would get reduced if the range is too large. At the same time, if we keep the upper limit too low, it may not be usable for a large percentage of the population!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images