The accleration of protons in a cyclotron is shown in the figure below. The magnetic field in a cyclotron is 1.25 T, and the maximum orbital radius of the circulating protons is 0.4 m. The mass of a proton is 1.67-10-27 kg and the charge on a proton is 1.6.10-19 C.
The accleration of protons in a cyclotron is shown in the figure below. The magnetic field in a cyclotron is 1.25 T, and the maximum orbital radius of the circulating protons is 0.4 m. The mass of a proton is 1.67-10-27 kg and the charge on a proton is 1.6.10-19 C.
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
100%
![The accleration of protons in a cyclotron is shown in the figure below.
The magnetic field in a cyclotron is 1.25 T, and the maximum orbital radius of the circulating protons
is 0.4 m. The mass of a proton is 1.67-10-27 kg and the charge on a proton is 1.6-10-19 C.
Dee
O
O
Ion source
Electric oscillator
1 Deflector plate
Proton beam
Target
Electric field region where
kinetic energy is gained](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F003be4cf-16a8-4c58-b6a8-fd2c192ebcf0%2F775396ee-c313-4928-aefa-490bf1f819f7%2Fnscuh0p_processed.png&w=3840&q=75)
Transcribed Image Text:The accleration of protons in a cyclotron is shown in the figure below.
The magnetic field in a cyclotron is 1.25 T, and the maximum orbital radius of the circulating protons
is 0.4 m. The mass of a proton is 1.67-10-27 kg and the charge on a proton is 1.6-10-19 C.
Dee
O
O
Ion source
Electric oscillator
1 Deflector plate
Proton beam
Target
Electric field region where
kinetic energy is gained
![a. What is the kinetic energy of the protons when they are ejected from the cyclotron?
KE at ejection
-12
= 1.92×10
b. What is this energy in MeV?
KE at ejection in MeV = 11.98
MeV
c. Through what total potential difference (potential difference between the gaps and number of trips
through the gaps) would a proton have to be accelerated to acquire this kinetic energy?
Think about the magnitude of potential you have calculated. While designing the cyclotron, gap
potential can be made much smaller than this magnitude by making the proton pass through the gap
several times by making it pass through a magnetic field and confining the protons to a circular path
before the next increment in energy.
Potential difference = 5.99
MV
d. What is the period of the voltage source used to accelerate the protons? Hint: For maximum
energy transfer from the external voltage source to the proton, the period of the oscillating voltage
should coincide with the period of oscillation of the proton.
Period of the voltage source =
-8
5.25×10
S
!
No, that's only partially correct](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F003be4cf-16a8-4c58-b6a8-fd2c192ebcf0%2F775396ee-c313-4928-aefa-490bf1f819f7%2F7fz2y2_processed.png&w=3840&q=75)
Transcribed Image Text:a. What is the kinetic energy of the protons when they are ejected from the cyclotron?
KE at ejection
-12
= 1.92×10
b. What is this energy in MeV?
KE at ejection in MeV = 11.98
MeV
c. Through what total potential difference (potential difference between the gaps and number of trips
through the gaps) would a proton have to be accelerated to acquire this kinetic energy?
Think about the magnitude of potential you have calculated. While designing the cyclotron, gap
potential can be made much smaller than this magnitude by making the proton pass through the gap
several times by making it pass through a magnetic field and confining the protons to a circular path
before the next increment in energy.
Potential difference = 5.99
MV
d. What is the period of the voltage source used to accelerate the protons? Hint: For maximum
energy transfer from the external voltage source to the proton, the period of the oscillating voltage
should coincide with the period of oscillation of the proton.
Period of the voltage source =
-8
5.25×10
S
!
No, that's only partially correct
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 6 steps with 5 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
![Physics for Scientists and Engineers](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
![Lecture- Tutorials for Introductory Astronomy](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
![College Physics: A Strategic Approach (4th Editio…](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON