Test Yourself 02 dy UTransform the following Bernoulli differential equation of the form + P(x) · y = dx Q(x)y" or dy + P(y) : = Q(y) · x" into a linear form using a corresponding substituting variable u. du 1 1) 2хуу' %3D у? — 2х3 Ans: -и %3 - 2х2 (Хіе, 2010) dx du 1 2) 3ydx – x(3x³y ln y + 1)dy = 0 Ans: dy u = -3 In y (Xie, 2010) y dy 3) 2- y = xy5 Ans: du + 4· u = -4x (Ayres, Differential Equations, 1952) dx dx dy du 4) dx + 2xy + xy* = 0 Ans: dx 6x · u = 3x (Ayres, Differential Equations, 1952)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
Test Yourself 02
dy
UTransform the following Bernoulli differential equation of the form 2+ P(x) · y =
dx
dx
Q(x)y" or
dy
+ P(y) :
= Q(y) · x" into a linear form using a corresponding
substituting variable u.
du
1
1) 2хуу' %3D у? — 2х3 Ans:
-и %3 - 2х2 (Хіе, 2010)
II
dx
du
1
2) 3ydx – x(3x³y ln y + 1)dy = 0 Ans:
dy
u = -3 In y (Xie, 2010)
y
dy
3) - y = xy5 Ans:
du
+ 4· u = -4x (Ayres, Differential Equations, 1952)
dx
dx
dy
+ 2xy + xy*
4)
dx
du
= 0 Ans:
dx
6x · u = 3x (Ayres, Differential Equations, 1952)
Transcribed Image Text:Test Yourself 02 dy UTransform the following Bernoulli differential equation of the form 2+ P(x) · y = dx dx Q(x)y" or dy + P(y) : = Q(y) · x" into a linear form using a corresponding substituting variable u. du 1 1) 2хуу' %3D у? — 2х3 Ans: -и %3 - 2х2 (Хіе, 2010) II dx du 1 2) 3ydx – x(3x³y ln y + 1)dy = 0 Ans: dy u = -3 In y (Xie, 2010) y dy 3) - y = xy5 Ans: du + 4· u = -4x (Ayres, Differential Equations, 1952) dx dx dy + 2xy + xy* 4) dx du = 0 Ans: dx 6x · u = 3x (Ayres, Differential Equations, 1952)
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,