Test for convergence the series 3.6.9 ... 3n (i) E x" (x > 0), 7.10.13 ... (3n + 4) 2.4.6 ... (2n + 2) Σ 3.5.7... (2n + 3) メー' (x>0). (ii)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

Don't give this solution we find the value or interval for x and also discuss at end points

Test for convergence the series
3.6.9
(i) E
n= 1
3n
7.10.13...
•..
x" (x> 0),
(3n + 4)
0.
2.4.6 ...
(2n +2)
3.5.7 ... (2n + 3)
(ii) E
(x>0).
Transcribed Image Text:Test for convergence the series 3.6.9 (i) E n= 1 3n 7.10.13... •.. x" (x> 0), (3n + 4) 0. 2.4.6 ... (2n +2) 3.5.7 ... (2n + 3) (ii) E (x>0).
) Let Š Une be the
given
series
こu
Then
Un =
3. 6.9.
3 n
7.10.13--(3nt4)
Now,
Unti
3-6-9.... 3n. (3n+3)
7.10.13. -(3n+y)
un
7.10. 13.
3.6.9 - 3り
- 3n+ 3
3n+7
Un
3n+7
二
unH
3n +3
also,
'3n+7
3n+7- 3 n- 3
Un
-)
ニ
Unti
3n+3
3n +3
こ
3n+3
n. 4
: Lim n -1) = lim
n(3+ %)
UnH
Lim
* >1
3+ 3m
: The
is convergent.
.
series
given
Transcribed Image Text:) Let Š Une be the given series こu Then Un = 3. 6.9. 3 n 7.10.13--(3nt4) Now, Unti 3-6-9.... 3n. (3n+3) 7.10.13. -(3n+y) un 7.10. 13. 3.6.9 - 3り - 3n+ 3 3n+7 Un 3n+7 二 unH 3n +3 also, '3n+7 3n+7- 3 n- 3 Un -) ニ Unti 3n+3 3n +3 こ 3n+3 n. 4 : Lim n -1) = lim n(3+ %) UnH Lim * >1 3+ 3m : The is convergent. . series given
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,