Ten thousand lb/h of wet sand at 70oF with a moisture content of 20% (dry basis) is to be dried to a moisture content of 5% (dry basis) in a continuous, fluidized-bed dryer operating at a pressure of 1 atm in the free-board region above the bed. The sand has a narrow size range, with an average particle size of 500 μm; a sphericity, ϕs, of 0.67; and a particle density of 2.6 g/cm3 . When the sand bed is dry, its void fraction,  ϵb, is 0.55. Fluidizing air will enter the bed at a temperature of 1,000oF with a humidity of 0.01 lb H2O/lb dry air. The adiabatic-saturation temperature is estimated to be 145oF. Batch pilot-plant tests with a fluidization velocity of twice the minimum show that drying takes place in the constant-rate period and that all moisture can be removed in 8 minutes using air at the same conditions and with a bed temperature of 145oF. Determine the bed height and diameter for the large, continuous unit

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question

Ten thousand lb/h of wet sand at 70oF with a moisture content of 20% (dry basis) is to be dried to a moisture content of 5% (dry basis) in a continuous, fluidized-bed dryer operating at a pressure of 1 atm in the free-board region above the bed. The sand has a narrow size range, with an average particle size of 500 μm; a sphericity, ϕs, of 0.67; and a particle density of 2.6 g/cm3 . When the sand bed is dry, its void fraction,  ϵb, is 0.55. Fluidizing air will enter the bed at a temperature of 1,000oF with a humidity of 0.01 lb H2O/lb dry air. The adiabatic-saturation temperature is estimated to be 145oF. Batch pilot-plant tests with a fluidization velocity of twice the minimum show that drying takes place in the constant-rate period and that all moisture can be removed in 8 minutes using air at the same conditions and with a bed temperature of 145oF. Determine the bed height and diameter for the large, continuous unit

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 7 steps with 20 images

Blurred answer
Knowledge Booster
Extraction and leaching
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The