TASK Double Ferris Wheel Some amusement parks have a double Ferris wheel, which consists of two vertically rotating wheels that are attached to each other by a bar that also rotates. There are eight gondolas equally spaced on each wheel. Riders experience a combination of two circular motions that provide a sensation more thrilling than the classic single Ferris wheel. In particular, riders experience the greatest sensation when their rate of change in height is the greatest. ● of the two wheels is 6 m in diameter and revolves every 12 s. • The rotating bar is 9 m long. The ends of the bar are attached to the centres of the wheels. • The height from the ground to the centre of the bar is 8 m. The bar makes a complete revolution every 20 s. A rider starts seated at the lowest position and moves counterclockwise. The bar starts in the vertical position. Consider the height of a rider who begins the ride in the lowest car. a) Write a function f(t) that expresses the height of the rider relative to the centre of the wheel at time t seconds after the ride starts. Write a second function g (t) that expresses the position of the end of the bar (the centre of the rider's wheel) relative to the ground at time t seconds. b) Explain how the sum of these two functions gives the rider's height above the ground after t seconds. c) Use technology to graph the two functions and their sum for a 2-min ride. d) What is the maximum height reached by the rider? When does this occur? e) What is the maximum vertical speed of the rider? When does this occur? f) Design your own double Ferris wheel. Determine the position function for a rider on your wheel. What is the maximum speed experienced by your riders? Is there a simple relationship between the dimensions of the Ferris

Elementary Algebra
17th Edition
ISBN:9780998625713
Author:Lynn Marecek, MaryAnne Anthony-Smith
Publisher:Lynn Marecek, MaryAnne Anthony-Smith
Chapter8: Rational Expressions And Equations
Section8.9: Use Direct And Inverse Variation
Problem 503E: The length a spring stretches varies directly with a weight placed at the end of the spring. When...
icon
Related questions
Question

 c) Graph each of the two functions for a 2-min ride
d) Find the derivative of f(t) and g(t). Based on the graphs, what is the maximum height reached be the rider? When does this occur?
e) Find the acceleration function for f(t) and g(t). Based on those derivative functions, what is the maximum vertical speed of the rider?

TASK
Double Ferris Wheel
Some amusement parks have a double Ferris wheel, which consists of two
vertically rotating wheels that are attached to each other by a bar that also
rotates. There are eight gondolas equally spaced on each wheel. Riders
experience a combination of two circular motions that provide a sensation
more thrilling than the classic single Ferris wheel. In particular, riders
experience the greatest sensation when their rate of change in height is the
greatest.
. Each of the two wheels is 6 m in
diameter and revolves every 12 s.
• The rotating bar is 9 m long. The
ends of the bar are attached to the
centres of the wheels.
• The height from the ground to
the centre of the bar is 8 m. The
bar makes a complete revolution
every 20 s.
• A rider starts seated at the
lowest position and moves
counterclockwise.
The bar starts in the vertical
position.
Consider the height of a rider who begins the ride in the lowest car.
a) Write a function f(t) that expresses the height of the rider relative to the
centre of the wheel at time t seconds after the ride starts. Write a second
function g (t) that expresses the position of the end of the bar (the centre of
the rider's wheel) relative to the ground at time t seconds.
b) Explain how the sum of these two functions gives the rider's height above
the ground after t seconds.
c) Use technology to graph the two functions and their sum for a 2-min ride.
d) What is the maximum height reached by the rider? When does this occur?
e) What is the maximum vertical speed of the rider? When does this occur?
f) Design your own double Ferris wheel. Determine the position function for
a rider on your wheel. What is the maximum speed experienced by your
riders? Is there a simple relationship between the dimensions of the Ferris
wheel and the maximum heights or speeds experienced?
Transcribed Image Text:TASK Double Ferris Wheel Some amusement parks have a double Ferris wheel, which consists of two vertically rotating wheels that are attached to each other by a bar that also rotates. There are eight gondolas equally spaced on each wheel. Riders experience a combination of two circular motions that provide a sensation more thrilling than the classic single Ferris wheel. In particular, riders experience the greatest sensation when their rate of change in height is the greatest. . Each of the two wheels is 6 m in diameter and revolves every 12 s. • The rotating bar is 9 m long. The ends of the bar are attached to the centres of the wheels. • The height from the ground to the centre of the bar is 8 m. The bar makes a complete revolution every 20 s. • A rider starts seated at the lowest position and moves counterclockwise. The bar starts in the vertical position. Consider the height of a rider who begins the ride in the lowest car. a) Write a function f(t) that expresses the height of the rider relative to the centre of the wheel at time t seconds after the ride starts. Write a second function g (t) that expresses the position of the end of the bar (the centre of the rider's wheel) relative to the ground at time t seconds. b) Explain how the sum of these two functions gives the rider's height above the ground after t seconds. c) Use technology to graph the two functions and their sum for a 2-min ride. d) What is the maximum height reached by the rider? When does this occur? e) What is the maximum vertical speed of the rider? When does this occur? f) Design your own double Ferris wheel. Determine the position function for a rider on your wheel. What is the maximum speed experienced by your riders? Is there a simple relationship between the dimensions of the Ferris wheel and the maximum heights or speeds experienced?
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Elementary Algebra
Elementary Algebra
Algebra
ISBN:
9780998625713
Author:
Lynn Marecek, MaryAnne Anthony-Smith
Publisher:
OpenStax - Rice University
Algebra: Structure And Method, Book 1
Algebra: Structure And Method, Book 1
Algebra
ISBN:
9780395977224
Author:
Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:
McDougal Littell
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
Glencoe Algebra 1, Student Edition, 9780079039897…
Glencoe Algebra 1, Student Edition, 9780079039897…
Algebra
ISBN:
9780079039897
Author:
Carter
Publisher:
McGraw Hill
Intermediate Algebra
Intermediate Algebra
Algebra
ISBN:
9780998625720
Author:
Lynn Marecek
Publisher:
OpenStax College