Systolic Blood Pressure and Survival Status Use technology and the ICUAdmissions dataset to find a 95% confidence interval for the difference in systolic blood pressure (Systolic) upon admission to the Intensive Care Unit at the hospital based on survival of the patient number (Status with 0 indicating the patient lived and 1 indicating the patient died.) Click here for the dataset associated with this question. Round your answers to one decimal place. The 95% confidence interval is to Is "No difference" between those who lived and died a plausible option for the difference in mean systolic blood pressure? Which group had higher systolic blood pressures on arrival?

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Topic Video
Question

See photo for questions. Dataset below:

ID Status Age Sex Race Service Cancer Renal Infection CPR Systolic HeartRate
8 0 27 1 1 0 0 0 1 0 142 88
12 0 59 0 1 0 0 0 0 0 112 80
14 0 77 0 1 1 0 0 0 0 100 70
28 0 54 0 1 0 0 0 1 0 142 103
32 0 87 1 1 1 0 0 1 0 110 154
38 0 69 0 1 0 0 0 1 0 110 132
40 0 63 0 1 1 0 0 0 0 104 66
41 0 30 1 1 0 0 0 0 0 144 110
42 0 35 0 2 0 0 0 0 0 108 60
50 0 70 1 1 1 1 0 0 0 138 103
51 0 55 1 1 1 0 0 1 0 188 86
53 0 48 0 2 1 1 0 0 0 162 100
58 0 66 1 1 1 0 0 0 0 160 80
61 0 61 1 1 0 0 1 0 0 174 99
73 0 66 0 1 0 0 0 0 0 206 90
75 0 52 0 1 1 0 0 1 0 150 71
82 0 55 0 1 1 0 0 1 0 140 116
84 0 59 0 1 0 0 0 1 0 48 39
92 0 63 0 1 0 0 0 0 0 132 128
96 0 72 0 1 1 0 0 0 0 120 80
98 0 60 0 1 0 0 0 1 1 114 110
100 0 78 0 1 1 0 0 0 0 180 75
102 0 16 1 1 0 0 0 0 0 104 111
111 0 62 0 1 1 0 1 0 0 200 120
112 0 61 0 1 0 0 0 1 0 110 120
136 0 35 0 1 0 0 0 0 0 150 98
137 0 74 1 1 1 0 0 0 0 170 92
143 0 68 0 1 1 0 0 0 0 158 96
153 0 69 1 1 1 0 0 0 0 132 60
170 0 51 0 1 0 0 0 0 0 110 99
173 0 55 0 1 1 0 0 0 0 128 92
180 0 64 1 3 1 0 0 1 0 158 90
184 0 88 1 1 1 0 0 1 0 140 88
186 0 23 1 1 1 0 0 0 0 112 64
187 0 73 1 1 1 1 0 0 0 134 60
190 0 53 0 3 1 0 0 0 0 110 70
191 0 74 0 1 1 0 0 0 0 174 86
207 0 68 0 1 1 0 0 0 0 142 89
211 0 66 1 1 0 0 0 1 0 170 95
214 0 60 0 1 1 1 0 1 0 110 92
219 0 64 0 1 1 0 0 1 0 160 120
225 0 66 0 2 1 1 0 1 0 150 120
237 0 19 1 1 1 0 0 1 0 142 106
247 0 18 1 1 0 0 0 0 0 146 112
249 0 63 0 1 1 0 0 1 0 162 84
260 0 45 0 1 0 0 0 0 0 126 110
266 0 64 0 1 0 0 0 0 0 162 114
271 0 68 1 1 0 0 0 1 0 200 170
276 0 64 1 1 0 0 0 1 0 126 122
277 0 82 0 1 1 0 0 0 0 135 70
278 0 73 0 1 1 0 0 0 0 170 88
282 0 70 0 1 0 0 0 0 0 86 153
292 0 61 0 1 1 0 0 1 0 68 124
295 0 64 0 1 1 1 0 1 0 116 88
297 0 47 0 1 1 1 0 1 0 120 83
298 0 69 0 1 1 0 0 0 0 170 100
308 0 67 1 1 0 0 0 1 0 190 125
310 0 18 0 1 1 1 0 0 0 156 99
319 0 77 0 1 1 0 0 1 0 158 107
327 0 32 0 2 1 0 0 0 0 120 84
333 0 19 1 1 1 0 0 1 0 104 121
335 0 72 1 1 1 0 0 0 0 130 86
343 0 49 0 1 0 0 0 1 0 112 112
357 0 68 1 1 1 0 0 0 0 154 74
362 0 82 0 1 1 0 1 1 0 130 131
365 0 32 1 3 0 0 0 1 1 110 118
369 0 78 1 1 1 0 0 1 0 126 96
370 0 57 0 1 0 0 0 1 0 128 104
371 0 46 1 1 1 1 0 0 0 132 90
376 0 23 0 1 0 0 0 1 0 144 88
378 0 55 0 1 0 0 0 0 0 132 112
379 0 18 0 1 1 0 0 0 0 112 76
381 0 20 0 1 1 0 0 0 0 164 108
382 0 75 1 1 1 0 0 0 0 100 48
398 0 79 0 1 1 0 0 1 0 112 67
401 0 40 0 1 1 0 0 0 0 140 65
409 0 76 0 1 1 0 0 1 0 110 70
413 0 66 1 1 1 0 0 1 0 139 92
416 0 76 0 1 0 0 0 1 0 190 100
438 0 80 1 1 1 0 0 0 0 162 44
439 0 23 1 1 0 0 0 1 0 120 88
440 0 48 0 2 1 0 0 1 0 92 162
455 0 67 0 2 1 0 0 0 0 90 92
462 0 69 1 1 1 0 0 0 0 150 85
495 0 65 0 3 1 0 0 0 0 208 124
498 0 72 0 1 1 0 0 0 0 126 88
502 0 55 0 1 0 0 0 0 0 190 136
505 0 40 0 1 0 0 0 0 0 130 65
508 0 55 1 1 0 0 0 1 0 110 86
517 0 34 0 1 1 0 0 0 0 110 80
522 0 47 1 1 1 0 0 0 0 132 68
525 0 41 1 1 0 0 0 1 0 118 145
526 0 84 1 1 0 0 1 1 0 100 103
546 0 88 1 1 1 0 0 0 0 110 46
548 0 77 1 1 1 1 0 0 0 212 87
550 0 80 0 1 0 0 0 0 0 122 126
552 0 16 0 1 1 0 0 0 0 100 140
560 0 70 0 1 1 0 0 0 0 160 60
563 0 83 1 1 1 0 0 1 0 138 91
573 0 23 0 2 0 0 0 0 0 130 52
575 0 67 1 1 0 0 0 0 1 120 120
584 0 18 0 1 1 1 0 0 0 130 140
597 0 77 1 1 0 0 0 1 0 136 138
598 0 48 1 1 0 0 0 0 1 128 96
601 0 24 1 2 0 0 0 0 0 140 86
605 0 71 1 1 0 0 0 1 0 124 106
607 0 72 0 1 1 0 0 0 0 134 60
619 0 77 1 1 1 0 1 0 0 170 115
620 0 60 0 1 1 0 0 1 0 124 135
639 0 46 0 1 1 1 0 0 0 110 128
644 0 65 1 1 0 0 0 0 0 100 105
645 0 36 0 1 0 0 0 0 0 224 125
648 0 68 0 1 1 0 0 0 0 112 64
655 0 58 0 1 0 0 0 0 0 154 98
659 0 76 1 1 0 0 0 1 0 92 112
669 0 41 1 2 0 0 0 0 0 110 144
670 0 20 0 3 0 0 0 0 0 120 68
674 0 91 0 1 0 0 1 1 0 152 125
675 0 75 0 1 1 0 0 0 0 140 90
676 0 25 1 1 0 0 0 0 0 131 135
709 0 70 0 1 0 0 0 1 0 78 143
713 0 47 0 1 1 0 0 0 0 156 112
727 0 75 0 3 1 0 0 0 0 144 120
728 0 40 0 2 0 0 0 1 0 160 150
732 0 71 0 1 0 0 0 1 0 148 192
746 0 70 1 1 0 0 0 1 0 90 140
749 0 58 0 1 1 0 0 0 0 148 95
754 0 54 0 1 1 0 0 0 0 136 80
761 0 77 0 1 1 0 0 0 0 128 59
763 0 55 0 1 1 1 0 1 0 138 140
764 0 21 0 1 1 0 0 0 0 120 62
765 0 53 0 2 0 0 1 0 1 170 115
766 0 31 1 1 0 1 1 1 1 146 100
772 0 71 0 1 1 1 0 0 0 204 52
776 0 49 0 2 0 0 0 0 0 150 100
784 0 60 1 2 0 0 0 1 0 116 92
794 0 50 0 1 0 0 0 1 0 156 99
796 0 45 1 1 1 0 0 0 0 132 109
809 0 21 0 1 1 0 0 0 0 110 90
814 0 73 1 1 1 0 0 0 0 130 83
816 0 28 0 1 1 0 0 1 0 122 80
829 0 17 0 1 1 0 0 0 0 140 78
837 0 17 1 3 0 0 0 0 0 130 140
846 0 21 1 1 1 0 0 0 0 142 79
847 0 68 1 1 1 1 0 0 0 91 79
863 0 17 0 3 1 0 0 0 0 136 78
867 0 60 0 1 0 0 0 1 0 108 120
875 0 69 0 1 1 0 0 0 0 169 73
877 0 88 1 1 0 0 1 0 0 190 88
880 0 20 0 1 1 0 0 0 0 120 80
881 0 89 1 1 1 0 0 0 0 190 114
889 0 62 1 1 0 0 0 0 0 110 78
893 0 46 0 1 0 0 1 1 0 142 89
906 0 19 0 1 1 0 0 1 0 100 137
912 0 71 0 1 0 0 0 1 0 124 124
915 0 67 0 1 1 0 0 0 0 152 78
923 0 20 0 1 1 0 0 0 0 104 83
924 0 73 1 2 0 0 1 0 0 162 100
925 0 59 0 1 0 0 0 0 0 100 88
929 0 42 0 1 1 0 0 0 0 122 84
4 1 87 1 1 1 0 0 1 0 80 96
27 1 76 1 1 1 0 0 1 0 128 90
47 1 78 0 1 0 0 0 1 0 130 132
52 1 63 0 1 0 0 1 1 0 112 106
127 1 19 0 1 1 0 0 0 0 140 76
145 1 67 1 1 0 0 0 1 0 62 145
154 1 53 1 1 0 0 0 1 0 148 128
165 1 92 0 1 0 0 0 1 0 124 80
195 1 57 0 1 0 0 0 1 1 110 124
202 1 75 1 1 1 1 0 0 0 130 136
204 1 91 0 1 0 0 0 1 0 64 125
208 1 70 0 1 1 0 0 0 0 168 122
222 1 88 0 1 0 0 0 1 1 141 140
238 1 41 0 1 1 0 0 1 0 140 58
241 1 61 0 1 0 0 0 0 0 140 81
273 1 80 0 1 1 0 0 0 0 100 85
285 1 40 0 1 0 0 0 1 0 86 80
299 1 75 0 1 0 0 0 1 0 90 100
331 1 63 1 1 1 0 1 1 1 36 86
346 1 75 1 1 0 1 0 0 0 190 94
380 1 20 0 1 1 0 0 0 0 148 72
384 1 71 0 1 0 0 0 0 0 142 95
412 1 51 1 1 1 0 0 1 0 134 100
427 1 65 0 1 0 0 0 0 0 66 94
442 1 69 1 3 0 0 1 0 0 170 60
461 1 55 0 1 1 0 1 1 0 122 100
468 1 50 1 1 1 1 0 0 0 120 96
490 1 78 0 1 0 0 0 1 0 110 81
518 1 71 1 1 0 0 0 0 1 70 112
611 1 85 1 1 1 0 0 0 0 136 96
613 1 75 0 1 0 0 1 1 0 130 119
666 1 65 1 1 0 0 0 1 1 104 150
671 1 49 0 1 0 0 0 1 1 140 108
706 1 75 1 1 0 0 1 1 1 150 66
740 1 72 1 1 0 0 0 0 0 90 160
751 1 69 0 1 0 0 1 0 0 80 81
752 1 64 0 1 0 1 0 1 0 80 118
789 1 60 0 1 0 0 0 1 0 56 114
871 1 60 0 3 1 0 1 1 0 130 55
921 1 50 1 2 0 0 0 0 0 256 64
Systolic Blood Pressure and Survival Status
Use technology and the ICUAdmissions dataset to find a 95% confidence interval for the difference in systolic blood pressure (Systolic) upon admission to the Intensive Care Unit at the hospital based on survival of the patient number (Status with 0
indicating the patient lived and 1 indicating the patient died.)
Click here for the dataset associated with this question.
Round your answers to one decimal place.
The 95% confidence interval is
to
Is "No difference" between those who lived and died a plausible option for the difference in mean systolic blood pressure?
Which group had higher systolic blood pressures on arrival?
Transcribed Image Text:Systolic Blood Pressure and Survival Status Use technology and the ICUAdmissions dataset to find a 95% confidence interval for the difference in systolic blood pressure (Systolic) upon admission to the Intensive Care Unit at the hospital based on survival of the patient number (Status with 0 indicating the patient lived and 1 indicating the patient died.) Click here for the dataset associated with this question. Round your answers to one decimal place. The 95% confidence interval is to Is "No difference" between those who lived and died a plausible option for the difference in mean systolic blood pressure? Which group had higher systolic blood pressures on arrival?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Centre, Spread, and Shape of a Distribution
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman