system that has characteristics of a spring with a constant 45 lbs / ft. If the car has an initial velocity of 3 ft / s, determine the total force that the brake and return system must store. Assume that there is no friction, that the travel on the flat (from D to the spring) is 350 feet, and that the test weight of the car with passengers is 1000 Ibs. What does the sign of the answer mean? 40 r= 240 ft 90 ft RESORTE 60 ft

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
I need the answer as soon as possible
1- The roller coaster car has a brake and return
system that has characteristics of a spring with a
constant 45 Ibs / ft. If the car has an initial
velocity of 3 ft / s, determine the total force that
the brake and return system must store. Assume
that there is no friction, that the travel on the flat
(from D to the spring) is 350 feet, and that the
test weight of the car with passengers is 1000
Ibs. What does the sign of the answer mean?
40
r= 240 ft
90 ft
RESORTE
60 ft
D
Transcribed Image Text:1- The roller coaster car has a brake and return system that has characteristics of a spring with a constant 45 Ibs / ft. If the car has an initial velocity of 3 ft / s, determine the total force that the brake and return system must store. Assume that there is no friction, that the travel on the flat (from D to the spring) is 350 feet, and that the test weight of the car with passengers is 1000 Ibs. What does the sign of the answer mean? 40 r= 240 ft 90 ft RESORTE 60 ft D
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Dimensional Analysis
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY