Suppose Un+1= A U₁ is a matrix difference equation which describes discreet population changes from year to year. A. Suppose matrix A has eigenvalues X₁ and X2 with corresponding eigenvectors V and W. What is the general solution of this difference equation? B. Let UN = (Y) where x represents the number of individuals in the first stage of life and y represents the number of individuals in the second stage of life in this population. In the long run, how do you find the fraction of the population that will be in stage one and the fraction of the population that will be in stage two ?
Suppose Un+1= A U₁ is a matrix difference equation which describes discreet population changes from year to year. A. Suppose matrix A has eigenvalues X₁ and X2 with corresponding eigenvectors V and W. What is the general solution of this difference equation? B. Let UN = (Y) where x represents the number of individuals in the first stage of life and y represents the number of individuals in the second stage of life in this population. In the long run, how do you find the fraction of the population that will be in stage one and the fraction of the population that will be in stage two ?
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question

Transcribed Image Text:One of the main differences, between difference equations and differential equation is that difference
equations model discreet changes ( that is month to month or year to year) whereas differential equations
model continuous changes.
Suppose Un+1= A Un is a matrix difference equation which describes discreet population
changes from year to year.
A. Suppose matrix A has eigenvalues X1 and Xz with corresponding eigenvectors V and W.
What is the general solution of this difference equation ?
B. Let UN =
where x represents the number of individuals in the first stage of life
and y represents the number of individuals in the second stage of life in this population .
In the long run, how do you find the fraction of the population that will be in stage one and the
fraction of the population that will be in stage two ?
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

