Suppose Un+1= A U₁ is a matrix difference equation which describes discreet population changes from year to year. A. Suppose matrix A has eigenvalues X₁ and X2 with corresponding eigenvectors V and W. What is the general solution of this difference equation? B. Let UN = (Y) where x represents the number of individuals in the first stage of life and y represents the number of individuals in the second stage of life in this population. In the long run, how do you find the fraction of the population that will be in stage one and the fraction of the population that will be in stage two ?

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
One of the main differences, between difference equations and differential equation is that difference
equations model discreet changes ( that is month to month or year to year) whereas differential equations
model continuous changes.
Suppose Un+1= A Un is a matrix difference equation which describes discreet population
changes from year to year.
A. Suppose matrix A has eigenvalues X1 and Xz with corresponding eigenvectors V and W.
What is the general solution of this difference equation ?
B. Let UN =
where x represents the number of individuals in the first stage of life
and y represents the number of individuals in the second stage of life in this population .
In the long run, how do you find the fraction of the population that will be in stage one and the
fraction of the population that will be in stage two ?
Transcribed Image Text:One of the main differences, between difference equations and differential equation is that difference equations model discreet changes ( that is month to month or year to year) whereas differential equations model continuous changes. Suppose Un+1= A Un is a matrix difference equation which describes discreet population changes from year to year. A. Suppose matrix A has eigenvalues X1 and Xz with corresponding eigenvectors V and W. What is the general solution of this difference equation ? B. Let UN = where x represents the number of individuals in the first stage of life and y represents the number of individuals in the second stage of life in this population . In the long run, how do you find the fraction of the population that will be in stage one and the fraction of the population that will be in stage two ?
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,