Suppose two bidders compete for a single indivisible item (e.g., a used car, a piece of art, etc.). We assume that bidder 1 values the item at $v1, and bidder 2 values the item at $v2. We assume that v1 > v2. In this problem we study a second price auction, which proceeds as follows. Each player i = 1, 2 simultaneously chooses a bid bi ≥ 0. The higher of the two bidders wins, and pays the second highest bid (in this case, the other player’s bid). In case of a tie, suppose the item goes to bidder 1. If a bidder does not win, their payoff is zero; if the bidder wins, their payoff is their value minus the second highest bid. a) Now suppose that player 1 bids b1 = v2 and player 2 bids b2 = v1, i.e., they both bid the value of the other player. (Note that in this case, player 2 is bidding above their value!) Show that this is a pure NE of the second price auction. (Note that in this pure NE the player with the lower value wins, while in the weak dominant strategy equilibrium where both players bid their value, the player with the highest value always wins.) b) Let ε be a small but positive value that is much smaller than either v1 or v2. Construct a pure NE where the revenue to the auctioneer is ε.

ENGR.ECONOMIC ANALYSIS
14th Edition
ISBN:9780190931919
Author:NEWNAN
Publisher:NEWNAN
Chapter1: Making Economics Decisions
Section: Chapter Questions
Problem 1QTC
icon
Related questions
Question

Suppose two bidders compete for a single indivisible item (e.g., a used car, a piece of art, etc.). We assume that bidder 1 values the item at $v1, and bidder 2 values the item at $v2. We assume that v1 > v2.

In this problem we study a second price auction, which proceeds as follows. Each player i = 1, 2 simultaneously chooses a bid bi ≥ 0. The higher of the two bidders wins, and pays the second highest bid (in this case, the other player’s bid). In case of a tie, suppose the item goes to bidder 1. If a bidder does not win, their payoff is zero; if the bidder wins, their payoff is their value minus the second highest bid.

a) Now suppose that player 1 bids b1 = v2 and player 2 bids b2 = v1, i.e., they both bid the value of the other player. (Note that in this case, player 2 is bidding above their value!) Show that this is a pure NE of the second price auction. (Note that in this pure NE the player with the lower value wins, while in the weak dominant strategy equilibrium where both players bid their value, the player with the highest value always wins.)

b) Let ε be a small but positive value that is much smaller than either v1 or v2. Construct a pure NE where the revenue to the auctioneer is ε.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Bayesian Probability Rule
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, economics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
ENGR.ECONOMIC ANALYSIS
ENGR.ECONOMIC ANALYSIS
Economics
ISBN:
9780190931919
Author:
NEWNAN
Publisher:
Oxford University Press
Principles of Economics (12th Edition)
Principles of Economics (12th Edition)
Economics
ISBN:
9780134078779
Author:
Karl E. Case, Ray C. Fair, Sharon E. Oster
Publisher:
PEARSON
Engineering Economy (17th Edition)
Engineering Economy (17th Edition)
Economics
ISBN:
9780134870069
Author:
William G. Sullivan, Elin M. Wicks, C. Patrick Koelling
Publisher:
PEARSON
Principles of Economics (MindTap Course List)
Principles of Economics (MindTap Course List)
Economics
ISBN:
9781305585126
Author:
N. Gregory Mankiw
Publisher:
Cengage Learning
Managerial Economics: A Problem Solving Approach
Managerial Economics: A Problem Solving Approach
Economics
ISBN:
9781337106665
Author:
Luke M. Froeb, Brian T. McCann, Michael R. Ward, Mike Shor
Publisher:
Cengage Learning
Managerial Economics & Business Strategy (Mcgraw-…
Managerial Economics & Business Strategy (Mcgraw-…
Economics
ISBN:
9781259290619
Author:
Michael Baye, Jeff Prince
Publisher:
McGraw-Hill Education