Suppose that you flip a coin. If it comes up heads, you win $20; if it comes up tails, you lose 520. a) Compute the expected value and variance of this lottery. b) Now consider a modification of this lottery: You flip two fair coins. If both coins come up heads, you win $20. If one coin comes up heads and the other comes up tails, you neither win nor lose-your payoff is $0. If both coins come up tails, you lose $20. Verify that this lottery has the same expected value but a smaller variance than the lottery with a single coin flip. (Hint: The probability that two fair coins both come up heads is 0.25, and the probability that two fair coins both come up tails is 0.25.) Why does the second lottery have a smaller variance?

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question
**Coin Flip Lottery Analysis**

Suppose that you flip a coin. If it comes up heads, you win $20; if it comes up tails, you lose $20.

a) Compute the expected value and variance of this lottery.

b) Now consider a modification of this lottery: You flip two fair coins. If both coins come up heads, you win $20. If one coin comes up heads and the other comes up tails, you neither win nor lose—your payoff is $0. If both coins come up tails, you lose $20. Verify that this lottery has the same expected value but a smaller variance than the lottery with a single coin flip. (Hint: The probability that two fair coins both come up heads is 0.25, and the probability that two fair coins both come up tails is 0.25.) Why does the second lottery have a smaller variance?
Transcribed Image Text:**Coin Flip Lottery Analysis** Suppose that you flip a coin. If it comes up heads, you win $20; if it comes up tails, you lose $20. a) Compute the expected value and variance of this lottery. b) Now consider a modification of this lottery: You flip two fair coins. If both coins come up heads, you win $20. If one coin comes up heads and the other comes up tails, you neither win nor lose—your payoff is $0. If both coins come up tails, you lose $20. Verify that this lottery has the same expected value but a smaller variance than the lottery with a single coin flip. (Hint: The probability that two fair coins both come up heads is 0.25, and the probability that two fair coins both come up tails is 0.25.) Why does the second lottery have a smaller variance?
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON