Suppose that you are waiting for a friend to call you and that the time you wait in minutes has an exponential distribution with parameter λ = 0.1. (a) What is the expectation of your waiting time? (b) What is the probability that you will wait longer than 10 minutes? (c) What is the probability that you will wait less than 5 minutes? (d) Suppose that after 5 minutes you are still waiting for the call. What is the distribution of your additional waiting time? In this case, what is the probability that your total waiting time is longer than 15 minutes? (e) Suppose now that the time you wait in minutes for the call has a U (0, 20) distribution. What is the expectation of your waiting time? If after 5 minutes you are still waiting for the call, what is the distribution of your additional waiting time?

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Suppose that you are waiting for a friend to call you and
that the time you wait in minutes has an exponential
distribution with parameter λ = 0.1.
(a) What is the expectation of your waiting time?
(b) What is the probability that you will wait longer than
10 minutes?
(c) What is the probability that you will wait less than
5 minutes?
(d) Suppose that after 5 minutes you are still waiting for
the call. What is the distribution of your additional
waiting time? In this case, what is the probability that
your total waiting time is longer than 15 minutes?
(e) Suppose now that the time you wait in minutes for
the call has a U (0, 20) distribution. What is the
expectation of your waiting time? If after 5 minutes
you are still waiting for the call, what is the
distribution of your additional waiting time?
Transcribed Image Text:Suppose that you are waiting for a friend to call you and that the time you wait in minutes has an exponential distribution with parameter λ = 0.1. (a) What is the expectation of your waiting time? (b) What is the probability that you will wait longer than 10 minutes? (c) What is the probability that you will wait less than 5 minutes? (d) Suppose that after 5 minutes you are still waiting for the call. What is the distribution of your additional waiting time? In this case, what is the probability that your total waiting time is longer than 15 minutes? (e) Suppose now that the time you wait in minutes for the call has a U (0, 20) distribution. What is the expectation of your waiting time? If after 5 minutes you are still waiting for the call, what is the distribution of your additional waiting time?
AI-Generated Solution
AI-generated content may present inaccurate or offensive content that does not represent bartleby’s views.
steps

Unlock instant AI solutions

Tap the button
to generate a solution

Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman