The probability that the person will wait more than 6 minutes is  Suppose that the person has already been waiting for 0.3 minutes. Find the probability that the person's total waiting time will be between 1.1 and 2.3 minutes  42% of all customers wait at least how long for the train?  minut

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
icon
Concept explainers
Question

A bus comes by every 13 minutes. The times from when a person arives at the busstop until the bus arrives follows a Uniform distribution from 0 to 13 minutes. A person arrives at the bus stop at a randomly selected time. Round to 4 decimal places where possible.

  1. The mean of this distribution is 
  2. The standard deviation is 
  3. The probability that the person will wait more than 6 minutes is 
  4. Suppose that the person has already been waiting for 0.3 minutes. Find the probability that the person's total waiting time will be between 1.1 and 2.3 minutes 
  5. 42% of all customers wait at least how long for the train?  minut
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Continuous Probability Distribution
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,