Suppose that Y₁ = B₁ X₁ + €į, i=1,..., n where ~ iid N(0,0²), σ > 0 holds true. We only have the observed versions of (Yį, X₁), which are (x₁, y₁), ..., (xn, Yn). (a) Find the Maximum Likelihood Estimator (MLE) for ³₁. (b) Show that MLE B₁ is unbiased. (c) Show that B₁ has a normal distribution. (d) Find Var (3₁) (treating the X₂'s as fixed).

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Suppose that
Y₁ = B₁X₁ + €i, i = 1,..., n
N(0,0²), σ > 0 holds true. We only have the observed versions of
(Yi, X₁), which are (x₁, y₁), . (Xn, Yn).
(a) Find the Maximum Likelihood Estimator (MLE) for ₁.
(b) Show that MLE B₁ is unbiased.
(c) Show that B₁ has a normal distribution.
(d) Find Var(8₁) (treating the X;'s as fixed).
iid
where ti~
Transcribed Image Text:Suppose that Y₁ = B₁X₁ + €i, i = 1,..., n N(0,0²), σ > 0 holds true. We only have the observed versions of (Yi, X₁), which are (x₁, y₁), . (Xn, Yn). (a) Find the Maximum Likelihood Estimator (MLE) for ₁. (b) Show that MLE B₁ is unbiased. (c) Show that B₁ has a normal distribution. (d) Find Var(8₁) (treating the X;'s as fixed). iid where ti~
Expert Solution
Step 1: Determine the maximum likelihood estimator

GivenY subscript i equals beta subscript 1 X subscript i plus epsilon subscript i where  is normally distributed with mean 0 and variance .

a) The likelihood function for the normal distribution is:

L open parentheses beta subscript 1 close parentheses equals product from i equals 1 to n of fraction numerator 1 over denominator square root of 2 pi sigma squared end root end fraction e to the power of negative fraction numerator open parentheses Y subscript i minus beta subscript 1 X subscript i close parentheses squared over denominator 2 sigma squared end fraction end exponent

To maximize the likelihood, it's easier to work with the log-likelihood:

l open parentheses beta subscript 1 close parentheses equals sum from i equals 1 to n of open square brackets negative 1 half log open parentheses 2 pi sigma squared close parentheses minus fraction numerator open parentheses Y subscript i minus beta subscript 1 X subscript i close parentheses squared over denominator 2 sigma squared end fraction close square brackets

Differentiate with respect to  and set the derivative equal to zero to find the MLE:

fraction numerator partial differential l open parentheses beta subscript 1 close parentheses over denominator partial differential beta subscript 1 end fraction equals sum from i equals 1 to n of fraction numerator X subscript i open parentheses Y subscript i minus beta subscript 1 X subscript i close parentheses over denominator sigma squared end fraction equals 0

Solving for :

beta with hat on top subscript 1 equals fraction numerator sum subscript i equals 1 end subscript superscript n X subscript i Y subscript i over denominator sum subscript i equals 1 end subscript superscript n X subscript i superscript 2 end fraction


b) E open parentheses beta with hat on top subscript 1 close parentheses equals E open parentheses fraction numerator sum subscript i equals 1 end subscript superscript n X subscript i Y subscript i over denominator sum subscript i equals 1 end subscript superscript n X subscript i superscript 2 end fraction close parentheses

equals fraction numerator sum subscript i equals 1 end subscript superscript n X subscript i E open parentheses Y subscript i close parentheses over denominator sum subscript i equals 1 end subscript superscript n X subscript i superscript 2 end fraction

equals fraction numerator sum subscript i equals 1 end subscript superscript n X subscript i open parentheses beta subscript 1 X subscript i close parentheses over denominator sum subscript i equals 1 end subscript superscript n X subscript i superscript 2 end fraction

equals beta subscript 1

steps

Step by step

Solved in 3 steps with 19 images

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman