Consider independent observations (ri, y₁), ... (rns yn), from the model Y,~ Bin(r,, p) for i = 1, ... , n, where the r, are fixed constants. Using likelihood L(p) and log-likelihood I(p) as appropriate, compute the following items. 1. Derive the maximum likelihood estimate p. 2. Write the second derivative of log-likelihood /(p). 3. Give an expression of the approximated asymptotic standard error of p by plugging in the estimate p. To -1(p) and then s. e. (p) = √v¹. p=p 4. Consider data (15,11), (20,14), (15,9), (10,7), (25,17), (15,12), (10,8). Using your formulæ, compute and write numerical estimates p, s. e. (p) and give a 95% confidence interval for p using the normal approximation. this end, estimate the Fisher Information Matrix by = == Note: To answer this question you will work by hand. Do not write in the textbox but upload a single page pdf image of your workings and results. For theoretical computations (a) to (c) you are expected to show your equations and developments in detail, simplifying as much as possible; for the numerical calculations in (d) you can use R but only write the requested results.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Consider independent observations (rı, y1), ... (rns yn), from the model Y, Bin(ri, p) for i = 1, ... , n,
where the r, are fixed constants. Using likelihood L(p) and log-likelihood I(p) as appropriate, compute the
following items.
N
1. Derive the maximum likelihood estimate p.
2. Write the second derivative of log-likelihood /(p).
==
3. Give an expression of the approximated asymptotic standard error of p by plugging in the estimate p. To
this end, estimate the Fisher Information Matrix by :
and then s. e.
ap²
4. Consider data (15,11), (20,14), (15,9), (10,7), (25,17), (15,12), (10,8). Using your formulæ, compute and write
numerical estimates p, s. e. (p) and give a 95% confidence interval for p using the normal approximation.
e. (p) = √v¹¹
p=p
Note: To answer this question you will work by hand. Do not write in the textbox but upload a single page pdf
image of your workings and results. For theoretical computations (a) to (c) you are expected to show your
equations and developments in detail, simplifying as much as possible; for the numerical calculations in (d) you
can use R but only write the requested results.
Transcribed Image Text:Consider independent observations (rı, y1), ... (rns yn), from the model Y, Bin(ri, p) for i = 1, ... , n, where the r, are fixed constants. Using likelihood L(p) and log-likelihood I(p) as appropriate, compute the following items. N 1. Derive the maximum likelihood estimate p. 2. Write the second derivative of log-likelihood /(p). == 3. Give an expression of the approximated asymptotic standard error of p by plugging in the estimate p. To this end, estimate the Fisher Information Matrix by : and then s. e. ap² 4. Consider data (15,11), (20,14), (15,9), (10,7), (25,17), (15,12), (10,8). Using your formulæ, compute and write numerical estimates p, s. e. (p) and give a 95% confidence interval for p using the normal approximation. e. (p) = √v¹¹ p=p Note: To answer this question you will work by hand. Do not write in the textbox but upload a single page pdf image of your workings and results. For theoretical computations (a) to (c) you are expected to show your equations and developments in detail, simplifying as much as possible; for the numerical calculations in (d) you can use R but only write the requested results.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps with 16 images

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman