Suppose that the values of a smooth function f are known for x = -0.15, –0.1, 0,0.1, 0.15 and 0.2. Given the following formulas for approximating f'(x) -11f(x) + 18f(x + h) – 9f(x + 2h) + 2f (x + 3h) f'(x) % (M1) -2f(x – h) – 3f(x) + 6f(x + h) – f(x +2h) S'(x) & (м2) 6h f'(x) f(x – 2h) – 6f(x – h) + 3f(x) + 2ƒ(x + h) 6h (м3) f'(x) -2f (x – 3h) + 9f(x – 2h) – 18f(x – ħ) + 11f(x) 6h (M4) Which one of the above formulas will best approximate f'(0.1)? O M1 O M2 O M3 O M4

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Suppose that the values of a smooth function f are known for x = -0.15, –0.1,0,0.1, 0.15 and 0.2.
Given the following formulas for approximating f'(x)
-11f(x) + 18f(x +h) – 9f(x + 2h) + 2f(x + 3h)
f'(x) %
(м1)
6h
L'G) 2f(x – h) – 3F(x) + 6ƒ(x + h) – F(x + 2k)
(м2)
6h
f'(x) f(x – 2h) – 6f(x – h) + 3f(x) + 2f(x + h)
6h
(м3)
f'e) -2f(x – 3h) + 9f(x – 2h) – 18f(x – h) + 11f(x)
(м4)
6h
Which one of the above formulas will best approximate f' (0.1)?
M1
M2
M3
M4
Transcribed Image Text:Suppose that the values of a smooth function f are known for x = -0.15, –0.1,0,0.1, 0.15 and 0.2. Given the following formulas for approximating f'(x) -11f(x) + 18f(x +h) – 9f(x + 2h) + 2f(x + 3h) f'(x) % (м1) 6h L'G) 2f(x – h) – 3F(x) + 6ƒ(x + h) – F(x + 2k) (м2) 6h f'(x) f(x – 2h) – 6f(x – h) + 3f(x) + 2f(x + h) 6h (м3) f'e) -2f(x – 3h) + 9f(x – 2h) – 18f(x – h) + 11f(x) (м4) 6h Which one of the above formulas will best approximate f' (0.1)? M1 M2 M3 M4
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,