Suppose that sin0 COS tan 2 Find the exact values of cos and tan 2 0 2 = 0 = = - 0 5 13 and 0°<0<90°. 0 2 8 Undefined X √67 S
Suppose that sin0 COS tan 2 Find the exact values of cos and tan 2 0 2 = 0 = = - 0 5 13 and 0°<0<90°. 0 2 8 Undefined X √67 S
Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE:
1. Give the measures of the complement and the supplement of an angle measuring 35°.
Related questions
Question
![### Trigonometric Identities and Half-Angle Formulas
**Problem Statement:**
Suppose that \(\sin \theta = \frac{5}{13}\) and \(0^\circ < \theta < 90^\circ\).
Find the exact values of \(\cos \frac{\theta}{2}\) and \(\tan \frac{\theta}{2}\).
**Solution:**
1. **Given:**
\(\sin \theta = \frac{5}{13}\)
2. **Objective:**
Find:
\[
\cos \frac{\theta}{2} \quad \text{and} \quad \tan \frac{\theta}{2}
\]
3. **Using the Half-Angle Formulas:**
For \(\cos \frac{\theta}{2}\):
\[
\cos \frac{\theta}{2} = \pm \sqrt{\frac{1 + \cos \theta}{2}}
\]
For \(\tan \frac{\theta}{2}\):
\[
\tan \frac{\theta}{2} = \pm \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}}
\]
4. **Find \(\cos \theta\):**
\[
\cos^2 \theta + \sin^2 \theta = 1
\]
\[
\cos^2 \theta + \left(\frac{5}{13}\right)^2 = 1
\]
\[
\cos^2 \theta + \frac{25}{169} = 1
\]
\[
\cos^2 \theta = 1 - \frac{25}{169}
\]
\[
\cos^2 \theta = \frac{144}{169}
\]
\[
\cos \theta = \pm \frac{12}{13}
\]
Since \(0^\circ < \theta < 90^\circ\), \(\cos \theta\) is positive:
\[
\cos \theta = \frac{12}{13}
\]
5. **Calculate \(\cos \frac{\theta}{2}\):**
\[
\cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F2a948ce4-bfec-4c4b-a693-d4721e6497c9%2F3b97c105-5350-4536-bfe8-0d3a8ee40e45%2Fc3c1o5_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Trigonometric Identities and Half-Angle Formulas
**Problem Statement:**
Suppose that \(\sin \theta = \frac{5}{13}\) and \(0^\circ < \theta < 90^\circ\).
Find the exact values of \(\cos \frac{\theta}{2}\) and \(\tan \frac{\theta}{2}\).
**Solution:**
1. **Given:**
\(\sin \theta = \frac{5}{13}\)
2. **Objective:**
Find:
\[
\cos \frac{\theta}{2} \quad \text{and} \quad \tan \frac{\theta}{2}
\]
3. **Using the Half-Angle Formulas:**
For \(\cos \frac{\theta}{2}\):
\[
\cos \frac{\theta}{2} = \pm \sqrt{\frac{1 + \cos \theta}{2}}
\]
For \(\tan \frac{\theta}{2}\):
\[
\tan \frac{\theta}{2} = \pm \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}}
\]
4. **Find \(\cos \theta\):**
\[
\cos^2 \theta + \sin^2 \theta = 1
\]
\[
\cos^2 \theta + \left(\frac{5}{13}\right)^2 = 1
\]
\[
\cos^2 \theta + \frac{25}{169} = 1
\]
\[
\cos^2 \theta = 1 - \frac{25}{169}
\]
\[
\cos^2 \theta = \frac{144}{169}
\]
\[
\cos \theta = \pm \frac{12}{13}
\]
Since \(0^\circ < \theta < 90^\circ\), \(\cos \theta\) is positive:
\[
\cos \theta = \frac{12}{13}
\]
5. **Calculate \(\cos \frac{\theta}{2}\):**
\[
\cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Similar questions
Recommended textbooks for you
![Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134217437/9780134217437_smallCoverImage.gif)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305652224/9781305652224_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
![Algebra and Trigonometry](https://www.bartleby.com/isbn_cover_images/9781938168376/9781938168376_smallCoverImage.gif)
![Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134217437/9780134217437_smallCoverImage.gif)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305652224/9781305652224_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
![Algebra and Trigonometry](https://www.bartleby.com/isbn_cover_images/9781938168376/9781938168376_smallCoverImage.gif)
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337278461/9781337278461_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning