Suppose F(x, y, z) = 3i + 5yj + 52²k. (a) Find the flux of F through the cube in the first octant with edge length c, one corner at the origin, and edges along the axes. The cube is oriented outward. Flux through the front face (the plane x = c) is Flux through the back face (the plane x = 0) is Flux through the right face (the plane y = c) is Flux through the left face (the plane y = 0) is Flux through the top face (the plane z = c) is Flux through the bottom face (the plane z = 0) is Total flux through the cube = (b) Use the geometric definition of divergence and the total flux to find div(F) at the origin. div(F(0, 0, 0)) = lim %3D

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
Suppose F(x, y, z) = 3i + 5yj + 522k.
(a) Find the flux of F through the cube in the first octant with edge length c, one corner at the origin, and edges along the axes. The cube is
oriented outward.
Flux through the front face (the plane x =
c) is
Flux through the back face (the plane x =
0) is
Flux through the right face (the plane y = c) is
Flux through the left face (the plane y = 0) is
Flux through the top face (the plane z =
c) is
Flux through the bottom face (the plane z =
0) is
Total flux through the cube =
(b) Use the geometric definition of divergence and the total flux to find div(F) at the origin.
div(F(0,0,0)) =lim
c→0
Transcribed Image Text:Suppose F(x, y, z) = 3i + 5yj + 522k. (a) Find the flux of F through the cube in the first octant with edge length c, one corner at the origin, and edges along the axes. The cube is oriented outward. Flux through the front face (the plane x = c) is Flux through the back face (the plane x = 0) is Flux through the right face (the plane y = c) is Flux through the left face (the plane y = 0) is Flux through the top face (the plane z = c) is Flux through the bottom face (the plane z = 0) is Total flux through the cube = (b) Use the geometric definition of divergence and the total flux to find div(F) at the origin. div(F(0,0,0)) =lim c→0
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Knowledge Booster
Electric field
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON