Suppose a simple random sample of size n= 42 is obtained from a population with p = 64 and o = 17. compute probabilities regarding the sample mean? Assuming the normal model can be used, describe the sampling distribution x. (a) What must be true regarding the distribution of the population in order to use the normal model (b) Assuming the normal model can be used, determine P(x< 68.2). (c) Assuming the normal model can be used, determine P(x266.4). Click here to view the standard normal distribution table (page 1) Click here to view the standard normal distribution table (page 2). (a) What must be true regarding the distribution of the population? O A. The population must be normally distributed. O B. Since the sample size is large enough, the population distribution does not need to be normal. OC. The population must be normally distributed and the sample size must be large. OD. There are no requirements on the shape of the distribution of the population. Assuming the normal model can be used, describe the sampling distribution x. OA Approximately normal, with H; = 64 and o; = 17 42 O B. Approximately normal, with µ; = 64 and o; = V17 17 OC. Approximately normal, with H; = 64 and o; = V42 (b) P(x < 68.2) =O (Round four decimal places as needed.) (c) P(x2 66.4) = (Round to four decimal places as needed.)

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
100%
Standard Normal Distribution Table (page 1)
Standard Normal Distribution Table (page 2)
Area
Area
Standard Normal Distribution
Standard Normal Distribution
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.0003
0.0004
0.0006
0.0009
0.0012
0.5000
0.5398
0.5793
0.5199
0.5596
0.5987
0.5319
0.5714
0.6103
0.0003
0.0003
0.0003
0.5040
-3.4
-3.3
-3.2
-3.1
-3.0
0.0003
0.0005
0.0007
0.0003
0.0005
0.0007
0.0003
0.0005
0.0006
0.0004
0.0006
0.0008
0.0012
0.0003
0.0004
0.0006
0.0003
0.0004
0.0006
0.0008
0.0011
0.0002
0.0003
0.0005
0.0
0.1
0.2
0.5080
0.5478
0.5871
0.5120
0.5517
0.5910
0.5160
0.5557
0.5948
0.5239
0.5636
0.6026
0.5279
0.5675
0.6064
0.5359
0.5753
0.6141
0.0004
0.0004
0.0005
0.5438
0.0005
0.5832
0.0010
0.0013
0.0009
0.0013
0.0009
0.0013
0.0008
0.0011
0.0008
0.0011
0.0007
0.0010
0.6179
0.6554
0.6255
0.6628
0.6406
0.6772
0.6217
0.0007
0.0010
0.6517
0.6879
0.3
0.6293
0.6664
0.6331
0.6700
0.6368
0.6443
0.6808
0.6480
0.6844
0.4
0.6591
0.6736
0.0017
0.0023
0.0032
0.7190
0.7517
0.7823
0.0015
0.0015
0.0021
0.0028
0.0014
0.0019
0.0026
0.5
0.6915
0.7257
0.7580
0.7881
0.8159
0.7019
0.7054
0.7389
0.7704
0.7123
0.7454
0.7764
0.8051
0.8315
0.7157
-29
-2.8
-2.7
0.0019
0.0026
0.0035
0.0018
0.0025
0.0018
0.0016
0.0023
0.0031
0.0016
0.0022
0.0030
0.0014
0.0020
0.0027
0.6950
0.7291
0.7611
0.6985
0.7324
0.7642
0.7088
0.7422
0.7734
0.7224
0.7549
0.7852
0.8133
0.8389
0.0024
0.0033
0.7357
0.7673
0.7967
0.8238
0.0021
0.7486
0.7794
0.8078
0.6
0.0034
0.0029
0.7
-2.6
-2.5
0.0047
0.0062
0.0044
0.0059
0.0039
0.0052
0.8106
0.8365
0.0045
0.0043
0.0057
0.0041
0.0055
0.0040
0.0054
0.0038
0.0051
0.0037
0.0049
0.0036
0.0048
0.8
0.7910
0.7939
0.8212
0.7995
0.8264
0.8023
0.0060
0.9
0.8186
0.8289
0.8340
-2.4
-2.3
-2.2
0.0082
0.0107
0.0139
0.0080
0.0104
0.0136
0.0078
0.0102
0.0132
0.0075
0.0099
0.0129
0.0073
0.0096
0.0125
0.0071
0.0094
0.0122
0.0158
0.0202
0.0069
0.0091
0.0119
0.8508
0.8729
0.8925
0.8577
0.8790
0.8980
0.0068
0.0089
0.0066
0.0087
0.0113
0.0064
0.0084
0.0110
1.0
1.1
1.2
0.8413
0.8643
0.8849
0.8438
0.8665
0.8869
0.8461
0.8686
0.8888
0.9066
0.9222
0.8485
0.8708
0.8907
0.8531
0.8749
0.8944
0.9115
0.9265
0.8554
0.8770
0.8599
0.8810
0.8997
0.9162
0.9306
0.8621
0.8830
0.9015
0.0116
0.8962
-2.1
-2.0
0.0174
0.0222
0.0150
0.0192
0.0146
0.9032
0.9192
0.9099
0.0179
0.0228
0.9147
0.9292
0.0170
0.0166
0.0212
0.0162
0.0207
0.0154
0.0197
0.0143
1.3
0.9049
0.9082
0.9131
0.9177
0.0217
0.0188
0.0183
1.4
0.9207
0.9236
0.9251
0.9279
0.9319
-1.9
-1.8
-1.7
0.0287
0.0359
0.0446
0.0281
0.0351
0.0436
0.0537
0.0655
0.0268
0.0336
0.0418
0.0233
0.0294
0.0367
0.9370
0.9484
0.9582
0.9664
0.9732
0.9429
0.9535
0.9625
0.9699
0.9761
0.0274
0.0262
0.0329
0.0409
0.0256
0.0322
0.0401
0.0250
0.0244
0.0239
0.0301
0.0375
0.0465
0.0571
1.5
1.6
1.7
0.9332
0.9452
0.9554
0.9345
0.9463
0.9564
0.9357
0.9474
0.9573
0.9656
0.9726
0.9382
0.9495
0.9591
0.9671
0.9738
0.9394
0.9505
0.9599
0.0314
0.0392
0.9406
0.9515
0.9418
0.9525
0.9616
0.9441
0.9545
0.0344
0.0427
0.0526
0.0643
0.0307
0.0384
0.9608
0.9633
-1.6
-1.5
0.0548
0.0668
0.0516
0.0630
0.0505
0.0618
0.0495
0.0606
0.0485
0.0594
0.0475
0.0582
0.0455
0.0559
0.9641
0.9713
0.9649
0.9719
0.9686
0.9750
0.9693
0.9756
1.8
0.9678
0.9706
0.9767
1.9
0.9744
0.0808
0.0968
0.1151
0.0793
0.0951
0.1131
0.0778
0.0934
0.1112
0.0764
0.0918
0.1093
0.0735
0.0885
0.1056
0.0721
0.0869
0.1038
0.0708
0.0853
0.1020
2.0
2.1
2.2
0.9772
0.9821
0.9861
0.9817
0.9857
0.9890
-1.4
0.9793
0.0749
0.0901
0.1075
0.1271
0.1492
0.0694
0.0838
0.0681
0.0823
0.0985
0.9778
-1.3
-1.2
0.9826
0.9864
0.9783
0.9830
0.9868
0.9788
0.9834
0.9798
0.9842
0.9878
0.9803
0.9846
0.9881
0.9808
0.9850
0.9884
0.9812
0.9854
0.9838
0.1003
0.9871
0.9875
0.9887
0.1335
0.1562
0.1314
0.1539
0.1190
0.1401
0.9904
0.9927
0.1292
0.1357
0.1587
0.1251
0.1469
0.1230
0.1446
0.1210
0.1423
0.1170
0.1379
2.3
2.4
0.9893
0.9918
0.9896
0.9920
0.9898
0.9922
0.9901
0.9925
0.9906
0.9929
0.9916
0.9936
0.9909
0.9911
0.9932
0.9913
0.9934
-1.0
0.1515
0.9931
-0.9
0.1841
0.1814
0.1788
0.1762
0.1736
0.1711
0.1685
0.1660
0.1635
0.1611
2.5
0.9938
0.9940
0.9941
0.9943
0.9945
0.9946
0.9948
0.9949
0.9951
0.9952
Print
Done
Print
Done
Transcribed Image Text:Standard Normal Distribution Table (page 1) Standard Normal Distribution Table (page 2) Area Area Standard Normal Distribution Standard Normal Distribution 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.0003 0.0004 0.0006 0.0009 0.0012 0.5000 0.5398 0.5793 0.5199 0.5596 0.5987 0.5319 0.5714 0.6103 0.0003 0.0003 0.0003 0.5040 -3.4 -3.3 -3.2 -3.1 -3.0 0.0003 0.0005 0.0007 0.0003 0.0005 0.0007 0.0003 0.0005 0.0006 0.0004 0.0006 0.0008 0.0012 0.0003 0.0004 0.0006 0.0003 0.0004 0.0006 0.0008 0.0011 0.0002 0.0003 0.0005 0.0 0.1 0.2 0.5080 0.5478 0.5871 0.5120 0.5517 0.5910 0.5160 0.5557 0.5948 0.5239 0.5636 0.6026 0.5279 0.5675 0.6064 0.5359 0.5753 0.6141 0.0004 0.0004 0.0005 0.5438 0.0005 0.5832 0.0010 0.0013 0.0009 0.0013 0.0009 0.0013 0.0008 0.0011 0.0008 0.0011 0.0007 0.0010 0.6179 0.6554 0.6255 0.6628 0.6406 0.6772 0.6217 0.0007 0.0010 0.6517 0.6879 0.3 0.6293 0.6664 0.6331 0.6700 0.6368 0.6443 0.6808 0.6480 0.6844 0.4 0.6591 0.6736 0.0017 0.0023 0.0032 0.7190 0.7517 0.7823 0.0015 0.0015 0.0021 0.0028 0.0014 0.0019 0.0026 0.5 0.6915 0.7257 0.7580 0.7881 0.8159 0.7019 0.7054 0.7389 0.7704 0.7123 0.7454 0.7764 0.8051 0.8315 0.7157 -29 -2.8 -2.7 0.0019 0.0026 0.0035 0.0018 0.0025 0.0018 0.0016 0.0023 0.0031 0.0016 0.0022 0.0030 0.0014 0.0020 0.0027 0.6950 0.7291 0.7611 0.6985 0.7324 0.7642 0.7088 0.7422 0.7734 0.7224 0.7549 0.7852 0.8133 0.8389 0.0024 0.0033 0.7357 0.7673 0.7967 0.8238 0.0021 0.7486 0.7794 0.8078 0.6 0.0034 0.0029 0.7 -2.6 -2.5 0.0047 0.0062 0.0044 0.0059 0.0039 0.0052 0.8106 0.8365 0.0045 0.0043 0.0057 0.0041 0.0055 0.0040 0.0054 0.0038 0.0051 0.0037 0.0049 0.0036 0.0048 0.8 0.7910 0.7939 0.8212 0.7995 0.8264 0.8023 0.0060 0.9 0.8186 0.8289 0.8340 -2.4 -2.3 -2.2 0.0082 0.0107 0.0139 0.0080 0.0104 0.0136 0.0078 0.0102 0.0132 0.0075 0.0099 0.0129 0.0073 0.0096 0.0125 0.0071 0.0094 0.0122 0.0158 0.0202 0.0069 0.0091 0.0119 0.8508 0.8729 0.8925 0.8577 0.8790 0.8980 0.0068 0.0089 0.0066 0.0087 0.0113 0.0064 0.0084 0.0110 1.0 1.1 1.2 0.8413 0.8643 0.8849 0.8438 0.8665 0.8869 0.8461 0.8686 0.8888 0.9066 0.9222 0.8485 0.8708 0.8907 0.8531 0.8749 0.8944 0.9115 0.9265 0.8554 0.8770 0.8599 0.8810 0.8997 0.9162 0.9306 0.8621 0.8830 0.9015 0.0116 0.8962 -2.1 -2.0 0.0174 0.0222 0.0150 0.0192 0.0146 0.9032 0.9192 0.9099 0.0179 0.0228 0.9147 0.9292 0.0170 0.0166 0.0212 0.0162 0.0207 0.0154 0.0197 0.0143 1.3 0.9049 0.9082 0.9131 0.9177 0.0217 0.0188 0.0183 1.4 0.9207 0.9236 0.9251 0.9279 0.9319 -1.9 -1.8 -1.7 0.0287 0.0359 0.0446 0.0281 0.0351 0.0436 0.0537 0.0655 0.0268 0.0336 0.0418 0.0233 0.0294 0.0367 0.9370 0.9484 0.9582 0.9664 0.9732 0.9429 0.9535 0.9625 0.9699 0.9761 0.0274 0.0262 0.0329 0.0409 0.0256 0.0322 0.0401 0.0250 0.0244 0.0239 0.0301 0.0375 0.0465 0.0571 1.5 1.6 1.7 0.9332 0.9452 0.9554 0.9345 0.9463 0.9564 0.9357 0.9474 0.9573 0.9656 0.9726 0.9382 0.9495 0.9591 0.9671 0.9738 0.9394 0.9505 0.9599 0.0314 0.0392 0.9406 0.9515 0.9418 0.9525 0.9616 0.9441 0.9545 0.0344 0.0427 0.0526 0.0643 0.0307 0.0384 0.9608 0.9633 -1.6 -1.5 0.0548 0.0668 0.0516 0.0630 0.0505 0.0618 0.0495 0.0606 0.0485 0.0594 0.0475 0.0582 0.0455 0.0559 0.9641 0.9713 0.9649 0.9719 0.9686 0.9750 0.9693 0.9756 1.8 0.9678 0.9706 0.9767 1.9 0.9744 0.0808 0.0968 0.1151 0.0793 0.0951 0.1131 0.0778 0.0934 0.1112 0.0764 0.0918 0.1093 0.0735 0.0885 0.1056 0.0721 0.0869 0.1038 0.0708 0.0853 0.1020 2.0 2.1 2.2 0.9772 0.9821 0.9861 0.9817 0.9857 0.9890 -1.4 0.9793 0.0749 0.0901 0.1075 0.1271 0.1492 0.0694 0.0838 0.0681 0.0823 0.0985 0.9778 -1.3 -1.2 0.9826 0.9864 0.9783 0.9830 0.9868 0.9788 0.9834 0.9798 0.9842 0.9878 0.9803 0.9846 0.9881 0.9808 0.9850 0.9884 0.9812 0.9854 0.9838 0.1003 0.9871 0.9875 0.9887 0.1335 0.1562 0.1314 0.1539 0.1190 0.1401 0.9904 0.9927 0.1292 0.1357 0.1587 0.1251 0.1469 0.1230 0.1446 0.1210 0.1423 0.1170 0.1379 2.3 2.4 0.9893 0.9918 0.9896 0.9920 0.9898 0.9922 0.9901 0.9925 0.9906 0.9929 0.9916 0.9936 0.9909 0.9911 0.9932 0.9913 0.9934 -1.0 0.1515 0.9931 -0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 Print Done Print Done
Suppose a simple random sample of size n= 42 is obtained from a population with u = 64 and o = 17.
(a) What must be true regarding the distribution of the population in order to use the normal model to compute probabilities regarding the sample mean? Assuming the normal model can be used, describe the sampling distribution x.
(b) Assuming the normal model can be used, determine P(x< 68.2).
(c) Assuming the normal model can be used, determine P(x2 66.4).
Click here to view the standard normal distribution table (page 1)
Click here to view the standard normal distribution table (page 2).
(a) What must be true regarding the distribution of the population?
A. The population must be normally distributed.
O B. Since the sample size is large enough, the population distribution does not
need to be normal.
C. The population must be normally distributed and the sample size must be large.
D. There are no requirements on the shape of the distribution of the population.
Assuming the normal model can be used, describe the sampling distribution x.
O A. Approximately normal, with
= 64 and o, = 17
42
B. Approximately normal, with µ; = 64 and
V17
17
C. Approximately normal, with µ; = 64 and
%3D
V42
(b) P(x< 68.2) =
(Round to four decimal places as needed.)
(c) P(x2 66.4) = (Round to four decimal places as needed.)
Transcribed Image Text:Suppose a simple random sample of size n= 42 is obtained from a population with u = 64 and o = 17. (a) What must be true regarding the distribution of the population in order to use the normal model to compute probabilities regarding the sample mean? Assuming the normal model can be used, describe the sampling distribution x. (b) Assuming the normal model can be used, determine P(x< 68.2). (c) Assuming the normal model can be used, determine P(x2 66.4). Click here to view the standard normal distribution table (page 1) Click here to view the standard normal distribution table (page 2). (a) What must be true regarding the distribution of the population? A. The population must be normally distributed. O B. Since the sample size is large enough, the population distribution does not need to be normal. C. The population must be normally distributed and the sample size must be large. D. There are no requirements on the shape of the distribution of the population. Assuming the normal model can be used, describe the sampling distribution x. O A. Approximately normal, with = 64 and o, = 17 42 B. Approximately normal, with µ; = 64 and V17 17 C. Approximately normal, with µ; = 64 and %3D V42 (b) P(x< 68.2) = (Round to four decimal places as needed.) (c) P(x2 66.4) = (Round to four decimal places as needed.)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Point Estimation, Limit Theorems, Approximations, and Bounds
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman