Suppose a population has two alleles at a particular locus, and individuals with different diploid genotypes at this locus have different probabilities of survival and expected offspring, as given in the table below: Genotype Percent surviving to adulthood Expected offspring GG 90% 11 Gg 80% 15 gg 50% 28 Calculate the absolute fitness, W, for each genotype, and then the relative fitness, w, using the smallest absolute fitness value as your reference. Assume that the selection differential s is equal to the difference in relative fitnesses of the heterozygote, Gg, genotype and the least-fit genotype. If there are 311 individuals who are homozygous for the G allele in a population of 4,659, and we ignore the effect of genetic drift, how much should the frequency of the G allele change over one generation of natural selection? (Note that this asking for an overall size of change – you should report a value greater than 0. Compute your answer up to four decimal places.)

Human Anatomy & Physiology (11th Edition)
11th Edition
ISBN:9780134580999
Author:Elaine N. Marieb, Katja N. Hoehn
Publisher:Elaine N. Marieb, Katja N. Hoehn
Chapter1: The Human Body: An Orientation
Section: Chapter Questions
Problem 1RQ: The correct sequence of levels forming the structural hierarchy is A. (a) organ, organ system,...
icon
Related questions
Question
Suppose a population has two alleles at a particular locus, and individuals with different diploid genotypes at this
locus have different probabilities of survival and expected offspring, as given in the table below:
Genotype
Percent surviving to adulthood
Expected offspring
GG
90%
11
Gg
80%
15
gg
50%
28
Calculate the absolute fitness, W, for each genotype, and then the relative fitness, w, using the smallest absolute
fitness value as your reference.
Assume that the selection differential s is equal to the difference in relative fitnesses of the heterozygote, Gg,
genotype and the least-fit genotype. If there are 311 individuals who are homozygous for the G allele in a
population of 4,659, and we ignore the effect of genetic drift, how much should the frequency of the G allele
change over one generation of natural selection?
(Note that this asking for an overall size of change – you should report a value greater than 0. Compute your
answer up to four decimal places.)
Transcribed Image Text:Suppose a population has two alleles at a particular locus, and individuals with different diploid genotypes at this locus have different probabilities of survival and expected offspring, as given in the table below: Genotype Percent surviving to adulthood Expected offspring GG 90% 11 Gg 80% 15 gg 50% 28 Calculate the absolute fitness, W, for each genotype, and then the relative fitness, w, using the smallest absolute fitness value as your reference. Assume that the selection differential s is equal to the difference in relative fitnesses of the heterozygote, Gg, genotype and the least-fit genotype. If there are 311 individuals who are homozygous for the G allele in a population of 4,659, and we ignore the effect of genetic drift, how much should the frequency of the G allele change over one generation of natural selection? (Note that this asking for an overall size of change – you should report a value greater than 0. Compute your answer up to four decimal places.)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Knowledge Booster
Genetic variation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Human Anatomy & Physiology (11th Edition)
Human Anatomy & Physiology (11th Edition)
Biology
ISBN:
9780134580999
Author:
Elaine N. Marieb, Katja N. Hoehn
Publisher:
PEARSON
Biology 2e
Biology 2e
Biology
ISBN:
9781947172517
Author:
Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:
OpenStax
Anatomy & Physiology
Anatomy & Physiology
Biology
ISBN:
9781259398629
Author:
McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa Stouter
Publisher:
Mcgraw Hill Education,
Molecular Biology of the Cell (Sixth Edition)
Molecular Biology of the Cell (Sixth Edition)
Biology
ISBN:
9780815344322
Author:
Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter Walter
Publisher:
W. W. Norton & Company
Laboratory Manual For Human Anatomy & Physiology
Laboratory Manual For Human Anatomy & Physiology
Biology
ISBN:
9781260159363
Author:
Martin, Terry R., Prentice-craver, Cynthia
Publisher:
McGraw-Hill Publishing Co.
Inquiry Into Life (16th Edition)
Inquiry Into Life (16th Edition)
Biology
ISBN:
9781260231700
Author:
Sylvia S. Mader, Michael Windelspecht
Publisher:
McGraw Hill Education