Stress Strain Diagram The Data shown in the table have been obtained from a tensile test conducted on a high-strength steel. The test specimen had a diameter of 0.505 inch and a gage length of 2.00 inch. Using software, plot the Stress-Strain Diagram for this steel and determine its: 1. Proportional Limit, 2. Modulus of Elasticity, 3. Yield Strength (SY) at 0.2% Offset, 4. Ultimate Strength (Su), 5. Percent Elongation in 2.00 inch, 6. Percent Reduction in Area, 7. Present the results (for Steps 1-6) in a highly organized table. Attach hie sheet (as problem slele A 4 A = 0.2.002 DLONNING of the effort
Stress Strain Diagram The Data shown in the table have been obtained from a tensile test conducted on a high-strength steel. The test specimen had a diameter of 0.505 inch and a gage length of 2.00 inch. Using software, plot the Stress-Strain Diagram for this steel and determine its: 1. Proportional Limit, 2. Modulus of Elasticity, 3. Yield Strength (SY) at 0.2% Offset, 4. Ultimate Strength (Su), 5. Percent Elongation in 2.00 inch, 6. Percent Reduction in Area, 7. Present the results (for Steps 1-6) in a highly organized table. Attach hie sheet (as problem slele A 4 A = 0.2.002 DLONNING of the effort
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question

Transcribed Image Text:Stress Strain Diagram
The Data shown in the table have been obtained from a tensile test conducted on
a high-strength steel. The test specimen had a diameter of 0.505 inch and a gage
length of 2.00 inch. Using software. plot the Stress-Strain Diagram for this steel
and determine its:
A= TTdT(050s
A
%3D
1. Proportional Limit,
2. Modulus of Elasticity,
3. Yield Strength (SY) at 0.2% Offset,
4. Ultimate Strength (Su),
5. Percent Elongation in 2.00 inch,
6. Percent Reduction in Area,
7. Present the results (for Steps 1-6) in a highly organized table.
e Altac ie sheet (as problelle
4
A = 0.2.002
BEOINNING of the effort
Elongation
(in)
Elongation
(In)
Load
Load
#:
#3
(Ib)
(Ib)
1
0.0170
15
12,300
0.0004
1,500
16
12,200
0.0200
0.0010
3.
3,100
17
12,000
0.0275
0.0016
4,700
18
13,000
0.0335
5.
6,300
0.0022
19
15,000
0.0400
0.0026
6.
8,000
20
16,200
0.055
0.0032
9,500
21
17,500
0.0680
0.0035
8.
11,000
22
18,800
0.1080
0.0041
11,800
23
19,600
0.1515
0.0051
24
20,100
0.2010
10
12,300
0.0071
25
20,100
0.2600
11
12,500
0.0100
26
18,700
0.3400
12
12,700
0.0131
27
17,200
0.4200
13
12,700
0.4700
14
12,500
0.0150
28
16,400
Fracture
23
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 4 images

Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY