Steven Chu, Claude Cohen-Tannoudji, and William Phillips received the 1997 Nobel Prize in Physics for “the development of methods to cool and trap atoms with laser light.” One part of their work was with a beam of atoms (mass ~ 10-25 kg) that move at a speed on the order of 1 km/s, similar to the speed of molecules in air at room temperature. An intense laser light beam tuned to a visible atomic transition (assume 500 nm) is directed straight into the atomic beam; that is, the atomic beam and the light beam are traveling in opposite directions. An atom in the ground state immediately absorbs a photon. Total system momentum is conserved in the absorption process. After a lifetime on the order of 10-8 s, the excited atom radiates by spontaneous emission. It has an equal probability of emitting a photon in any direction. Therefore, the average “recoil” of the atom is zero over many absorption and emission cycles. (a) Estimate the average deceleration of the atomic beam. (b) What is the order of magnitude of the distance over which the atoms in the beam are brought to a halt?

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Question

Steven Chu, Claude Cohen-Tannoudji, and William Phillips received the 1997 Nobel Prize in Physics for “the development of methods to cool and trap atoms with laser light.” One part of their work was with a beam of atoms (mass ~ 10-25 kg) that move at a speed on the order of 1 km/s, similar to the speed of molecules in air at room temperature. An intense laser light beam tuned to a visible atomic transition (assume 500 nm) is directed straight into the atomic beam; that is, the atomic beam and the light beam are traveling in opposite directions. An atom in the ground state immediately absorbs a photon. Total system momentum is conserved in the absorption process. After a lifetime on the order of 10-8 s, the excited atom radiates by spontaneous emission. It has an equal probability of emitting a photon in any direction. Therefore, the average “recoil” of the atom is zero over many absorption and emission cycles. (a) Estimate the average deceleration of the atomic beam. (b) What is the order of magnitude of the distance over which the atoms in the beam are brought to a halt?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Quantum mechanics and hydrogen atom
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON