Steam passes into tubes in a heating system whose outer diameter is 3 cm and whose wall is held at a temperature of 120°C. Tubes are connected to circular aluminium alloy fins (k = 180 W/m. ° C) with an outer diameter of 6 cm and a constant thickness of 2 mm. The distance between the two fins is 3 mm and the tube length is 200 fins per meter. With h = 60 W/m2.°C, the heat is transmitted to the ambient air at 25°C. Evaluate the increase in heat transfer from the tube per meter of its length as a result of adding fins.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
100%

Steam passes into tubes in a heating system whose outer diameter is 3 cm and whose wall is held at a temperature of 120°C. Tubes are connected to circular aluminium alloy fins (k = 180 W/m. ° C) with an outer diameter of 6 cm and a constant thickness of 2 mm. The distance between the two fins is 3 mm and the tube length is 200 fins per meter. With h = 60 W/m2.°C, the heat is transmitted to the ambient air at 25°C. Evaluate the increase in heat transfer from the tube per meter of its length as a result of adding fins.

Steam passes into tubes in a heating system whose outer diameter is 3 cm and whose
wall is held at a temperature of 120°C. Tubes are connected to circular aluminium
alloy fins (k = 180 W/m. ° C) with an outer diameter of 6 cm and a constant thickness
of 2 mm. The distance between the two fins is 3 mm and the tube length is 200 fins
per meter. With h = 60 W/m2.°C, the heat is transmitted to the ambient air at 25°C.
Evaluate the increase in heat transfer from the tube per meter of its length as a result
of adding fins.
Transcribed Image Text:Steam passes into tubes in a heating system whose outer diameter is 3 cm and whose wall is held at a temperature of 120°C. Tubes are connected to circular aluminium alloy fins (k = 180 W/m. ° C) with an outer diameter of 6 cm and a constant thickness of 2 mm. The distance between the two fins is 3 mm and the tube length is 200 fins per meter. With h = 60 W/m2.°C, the heat is transmitted to the ambient air at 25°C. Evaluate the increase in heat transfer from the tube per meter of its length as a result of adding fins.
Expert Solution
steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Knowledge Booster
Conduction
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY