Steam at 160 ° C flows in a pipe having an inner radius of 50 mm and an outer radius of 55 mm. The convective heat transfer coefficient between the steam and the inner pipe wall is 2500 W / (m² ° C). The outer surface of the pipe exposed to ambient air is 25 ° C with a convective heat transfer coefficient of 10 W / (m² ° C). Assuming steady state, calculate the rate of heat transfer per meter of pipe from steam to air. Assume that the thermal conductivity of stainless steel is 15 W / (m ° C.). Steps of work according to example 4.16 Singh. a. Find the overall heat transfer coefficient = Answer W / m² ° C. b. Heat transfer rate per meter of pipe = Answer W / m.
Steam at 160 ° C flows in a pipe having an inner radius of 50 mm and an outer radius of 55 mm. The convective heat transfer coefficient between the steam and the inner pipe wall is 2500 W / (m² ° C). The outer surface of the pipe exposed to ambient air is 25 ° C with a convective heat transfer coefficient of 10 W / (m² ° C). Assuming steady state, calculate the rate of heat transfer per meter of pipe from steam to air. Assume that the thermal conductivity of stainless steel is 15 W / (m ° C.). Steps of work according to example 4.16 Singh. a. Find the overall heat transfer coefficient = Answer W / m² ° C. b. Heat transfer rate per meter of pipe = Answer W / m.
Related questions
Question
Steam at 160 ° C flows in a pipe having an inner radius of 50 mm and an outer radius of 55 mm. The convective heat transfer coefficient between the steam and the inner pipe wall is 2500 W / (m² ° C). The outer surface of the pipe exposed to ambient air is 25 ° C with a convective heat transfer coefficient of 10 W / (m² ° C). Assuming steady state, calculate the rate of heat transfer per meter of pipe from steam to air. Assume that the thermal conductivity of stainless steel is 15 W / (m ° C.). Steps of work according to example 4.16 Singh. a. Find the overall heat transfer coefficient = Answer W / m² ° C. b. Heat transfer rate per meter of pipe = Answer W / m.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps