# Educational Exercise: Sampling Distribution of the Sample Mean In this exercise, we explore the sampling distribution of the sample mean \( \bar{x} \) by considering a random sample of size \( n \) taken from a population with a known mean \( \mu \) and standard deviation \( \sigma \). For each scenario provided, calculate the mean, variance, and standard deviation of the sampling distribution of \( \bar{x} \). Ensure that all answers are rounded to four decimal places. ### Scenario A - **Population Mean (\( \mu \)):** 7 - **Population Standard Deviation (\( \sigma \)):** 4 - **Sample Size (\( n \)):** 39 | Statistic | Value | |-------------|----------| | Mean of \( \bar{x} \) | | | Variance of \( \bar{x} \) | | | Standard Deviation of \( \bar{x} \) | | ### Scenario B - **Population Mean (\( \mu \)):** 559 - **Population Standard Deviation (\( \sigma \)):** 3 - **Sample Size (\( n \)):** 119 | Statistic | Value | |-------------|----------| | Mean of \( \bar{x} \) | | | Variance of \( \bar{x} \) | | | Standard Deviation of \( \bar{x} \) | | ### Scenario C - **Population Mean (\( \mu \)):** 3 - **Population Standard Deviation (\( \sigma \)):** 6 - **Sample Size (\( n \)):** 8 | Statistic | Value | |-------------|----------| | Mean of \( \bar{x} \) | | | Variance of \( \bar{x} \) | | | Standard Deviation of \( \bar{x} \) | | ### Instructions 1. **Mean of \( \bar{x} \):** The mean of the sampling distribution is equal to the population mean \( \mu \). 2. **Variance of \( \bar{x} \):** Calculate using the formula \(\sigma^2 / n\). 3. **Standard Deviation of \( \bar{x} \):** Calculate using the formula \(\sigma / \sqrt{n}\). This exercise provides practice in understanding

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
# Educational Exercise: Sampling Distribution of the Sample Mean

In this exercise, we explore the sampling distribution of the sample mean \( \bar{x} \) by considering a random sample of size \( n \) taken from a population with a known mean \( \mu \) and standard deviation \( \sigma \). For each scenario provided, calculate the mean, variance, and standard deviation of the sampling distribution of \( \bar{x} \). Ensure that all answers are rounded to four decimal places.

### Scenario A
- **Population Mean (\( \mu \)):** 7
- **Population Standard Deviation (\( \sigma \)):** 4
- **Sample Size (\( n \)):** 39

| Statistic   | Value    |
|-------------|----------|
| Mean of \( \bar{x} \)     |            |
| Variance of \( \bar{x} \) |            |
| Standard Deviation of \( \bar{x} \) |            |

### Scenario B
- **Population Mean (\( \mu \)):** 559
- **Population Standard Deviation (\( \sigma \)):** 3
- **Sample Size (\( n \)):** 119

| Statistic   | Value    |
|-------------|----------|
| Mean of \( \bar{x} \)     |            |
| Variance of \( \bar{x} \) |            |
| Standard Deviation of \( \bar{x} \) |            |

### Scenario C
- **Population Mean (\( \mu \)):** 3
- **Population Standard Deviation (\( \sigma \)):** 6
- **Sample Size (\( n \)):** 8

| Statistic   | Value    |
|-------------|----------|
| Mean of \( \bar{x} \)     |            |
| Variance of \( \bar{x} \) |            |
| Standard Deviation of \( \bar{x} \) |            |

### Instructions
1. **Mean of \( \bar{x} \):** The mean of the sampling distribution is equal to the population mean \( \mu \).
2. **Variance of \( \bar{x} \):** Calculate using the formula \(\sigma^2 / n\).
3. **Standard Deviation of \( \bar{x} \):** Calculate using the formula \(\sigma / \sqrt{n}\).

This exercise provides practice in understanding
Transcribed Image Text:# Educational Exercise: Sampling Distribution of the Sample Mean In this exercise, we explore the sampling distribution of the sample mean \( \bar{x} \) by considering a random sample of size \( n \) taken from a population with a known mean \( \mu \) and standard deviation \( \sigma \). For each scenario provided, calculate the mean, variance, and standard deviation of the sampling distribution of \( \bar{x} \). Ensure that all answers are rounded to four decimal places. ### Scenario A - **Population Mean (\( \mu \)):** 7 - **Population Standard Deviation (\( \sigma \)):** 4 - **Sample Size (\( n \)):** 39 | Statistic | Value | |-------------|----------| | Mean of \( \bar{x} \) | | | Variance of \( \bar{x} \) | | | Standard Deviation of \( \bar{x} \) | | ### Scenario B - **Population Mean (\( \mu \)):** 559 - **Population Standard Deviation (\( \sigma \)):** 3 - **Sample Size (\( n \)):** 119 | Statistic | Value | |-------------|----------| | Mean of \( \bar{x} \) | | | Variance of \( \bar{x} \) | | | Standard Deviation of \( \bar{x} \) | | ### Scenario C - **Population Mean (\( \mu \)):** 3 - **Population Standard Deviation (\( \sigma \)):** 6 - **Sample Size (\( n \)):** 8 | Statistic | Value | |-------------|----------| | Mean of \( \bar{x} \) | | | Variance of \( \bar{x} \) | | | Standard Deviation of \( \bar{x} \) | | ### Instructions 1. **Mean of \( \bar{x} \):** The mean of the sampling distribution is equal to the population mean \( \mu \). 2. **Variance of \( \bar{x} \):** Calculate using the formula \(\sigma^2 / n\). 3. **Standard Deviation of \( \bar{x} \):** Calculate using the formula \(\sigma / \sqrt{n}\). This exercise provides practice in understanding
Expert Solution
Step 1

a)

Given :

μ = 7

σ = 4

n = 39

μx¯ = μ = 7

σX¯2 = σ2n

σX¯2 = 1639

σX¯2 = 0.4103

σX¯ = σn

σX¯ = 439

σX¯ = 0.6405

 

steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman