State the Fundamental Theorem of Calculus (Part I and Part II). Hence or otherwise: (a) If u is a differentiable function of a over I, obtain a formula for d (Hint: You may use (c) By Using L'hopital's rule, Hence find (√1+ u^du) dt] . dz² (b) Evaluate i. Evaluate the limit lim 7-0 dz T lim #-3 I I fint dt = F(x) - F(3) for some antidervative F of sint) f(t). sin (22) + 7z² - 2z 2² (2+1)² sin t

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
1. State the Fundamental Theorem of Calculus (Part I and Part II). Hence or otherwise:
(a) If u is a differentiable function of a over I, obtain a formula for
Hence find
(b) Evaluate
d²
dz²
[/² (™ √/₁+ u^²du)
lim
#-3
i. Evaluate the limit lim
-0
af f(t).
dz
I
-35² sint dt)
x-3
(Hint: You may use f3 sint dt = F(x) - F(3) for some antidervative F of it)
(c) By Using L'hopital's rule,
sin(22) + 7z² - 2z
2² (2+1)²
Transcribed Image Text:1. State the Fundamental Theorem of Calculus (Part I and Part II). Hence or otherwise: (a) If u is a differentiable function of a over I, obtain a formula for Hence find (b) Evaluate d² dz² [/² (™ √/₁+ u^²du) lim #-3 i. Evaluate the limit lim -0 af f(t). dz I -35² sint dt) x-3 (Hint: You may use f3 sint dt = F(x) - F(3) for some antidervative F of it) (c) By Using L'hopital's rule, sin(22) + 7z² - 2z 2² (2+1)²
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,