(a) Let f(x) = of f(x). a ba where a, b, x > 0. Use limit definition to find the derivative f '(x)= f (x +h)-f(x) h

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Derivative Using the Limit Definition

#### (a) Example Problem

Given the function:

\[ f(x) = \sqrt{\frac{a}{bx}} \]

where \( a, b, x > 0 \), use the **limit definition** to find the derivative of \( f(x) \).

#### Limit Definition of the Derivative:

\[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \]

Explanation:

To find the derivative of the function \( f(x) = \sqrt{\frac{a}{bx}} \) using the limit definition, follow these steps:

1. **Substitute \( x+h \) into the function \( f(x) \).**
   \[ f(x+h) = \sqrt{\frac{a}{b(x+h)}} \]

2. **Form the difference quotient.**
   \[ \frac{f(x+h) - f(x)}{h} \]

3. **Take the limit as \( h \) approaches 0.**
   \[ \lim_{h \to 0} \frac{\sqrt{\frac{a}{b(x+h)}} - \sqrt{\frac{a}{bx}}}{h} \]

By evaluating this limit, you will find the derivative \( f'(x) \).
Transcribed Image Text:### Derivative Using the Limit Definition #### (a) Example Problem Given the function: \[ f(x) = \sqrt{\frac{a}{bx}} \] where \( a, b, x > 0 \), use the **limit definition** to find the derivative of \( f(x) \). #### Limit Definition of the Derivative: \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] Explanation: To find the derivative of the function \( f(x) = \sqrt{\frac{a}{bx}} \) using the limit definition, follow these steps: 1. **Substitute \( x+h \) into the function \( f(x) \).** \[ f(x+h) = \sqrt{\frac{a}{b(x+h)}} \] 2. **Form the difference quotient.** \[ \frac{f(x+h) - f(x)}{h} \] 3. **Take the limit as \( h \) approaches 0.** \[ \lim_{h \to 0} \frac{\sqrt{\frac{a}{b(x+h)}} - \sqrt{\frac{a}{bx}}}{h} \] By evaluating this limit, you will find the derivative \( f'(x) \).
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning