Starting from rest, a 75 kg skier slides down a 17.0° slope. If the coefficient of kinetic friction between the skis and snow is 0.120 and it takes 16.9 s to get to the bottom, how long is the ski trail? (Use g = 9.8 m/s². a) 124 m b) 186 m c) 148 m d) 248 m

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
**Problem:**

Starting from rest, a 75 kg skier slides down a 17.0° slope. If the coefficient of kinetic friction between the skis and snow is 0.120 and it takes 16.9 s to get to the bottom, how long is the ski trail? (Use \( g = 9.8 \, \text{m/s}^2 \)).

**Options:**

- a) 124 m  
- b) 186 m  
- c) 148 m  
- d) 248 m  

**Explanation:**

This is a physics problem involving motion on an inclined plane, friction, and kinematics. It asks you to calculate the length of the ski trail using given data about the skier, slope angle, friction, and time. The key to solving the problem is to determine the acceleration of the skier and then use kinematic equations to find the distance traveled.
Transcribed Image Text:**Problem:** Starting from rest, a 75 kg skier slides down a 17.0° slope. If the coefficient of kinetic friction between the skis and snow is 0.120 and it takes 16.9 s to get to the bottom, how long is the ski trail? (Use \( g = 9.8 \, \text{m/s}^2 \)). **Options:** - a) 124 m - b) 186 m - c) 148 m - d) 248 m **Explanation:** This is a physics problem involving motion on an inclined plane, friction, and kinematics. It asks you to calculate the length of the ski trail using given data about the skier, slope angle, friction, and time. The key to solving the problem is to determine the acceleration of the skier and then use kinematic equations to find the distance traveled.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON