Specifications for a part for a 3-D printer state that the part should weigh between 24 and 25 ounces. The process that produces the parts has a mean of 24.5 ounces and a standard deviation of .2 ounce. The distribution of output is normal. What percentage of parts will not meet the weight specs? Within what values will 95.44 percent of the sample means of this process fall if samples of n = 16 are taken and the process is in control (random)? Using the control limits from part b, would the following sample means be in control? 24.52, 24.53, 24.44, 24.51, 24.41, 24.39 An automatic filling machine is used to fill 1-liter bottles of cola. The machine’s output is approxi- mately normal with a mean of 1.0 liter and a standard deviation of .01 liter. Output is monitored using means of samples of 25 observations. Determine upper and lower control limits that will include roughly 97 percent of the sample means when the process is in control. Given the following sample means—1.005, 1.001, .998, 1.002, .995, and .999—is the process in control? Is the process in control given the following sample means—1.003, .999, .997, 1.001, 1.002, .998, and 1.004?
Specifications for a part for a 3-D printer state that the part should weigh between 24 and 25 ounces. The process that produces the parts has a mean of 24.5 ounces and a standard deviation of .2 ounce. The distribution of output is normal. What percentage of parts will not meet the weight specs? Within what values will 95.44 percent of the sample means of this process fall if samples of n = 16 are taken and the process is in control (random)? Using the control limits from part b, would the following sample means be in control? 24.52, 24.53, 24.44, 24.51, 24.41, 24.39 An automatic filling machine is used to fill 1-liter bottles of cola. The machine’s output is approxi- mately normal with a mean of 1.0 liter and a standard deviation of .01 liter. Output is monitored using means of samples of 25 observations. Determine upper and lower control limits that will include roughly 97 percent of the sample means when the process is in control. Given the following sample means—1.005, 1.001, .998, 1.002, .995, and .999—is the process in control? Is the process in control given the following sample means—1.003, .999, .997, 1.001, 1.002, .998, and 1.004?
Practical Management Science
6th Edition
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:WINSTON, Wayne L.
Chapter2: Introduction To Spreadsheet Modeling
Section: Chapter Questions
Problem 20P: Julie James is opening a lemonade stand. She believes the fixed cost per week of running the stand...
Related questions
Question
- Specifications for a part for a 3-D printer state that the part should weigh between 24 and
25 ounces. The process that produces the parts has a mean of 24.5 ounces and a standard deviation of .2 ounce. The distribution of output is normal.- What percentage of parts will not meet the weight specs?
- Within what values will 95.44 percent of the sample means of this process fall if samples of
n = 16 are taken and the process is in control (random)?
- Using the control limits from part b, would the following sample means be in control? 24.52,
24.53, 24.44, 24.51, 24.41, 24.39
- An automatic filling machine is used to fill 1-liter bottles of cola. The machine’s output is approxi- mately normal with a mean of 1.0 liter and a standard deviation of .01 liter. Output is monitored using means of samples of 25 observations.
- Determine upper and lower control limits that will include roughly 97 percent of the sample means when the process is in control.
- Given the following sample means—1.005, 1.001, .998, 1.002, .995, and .999—is the process in control?
- Is the process in control given the following sample means—1.003, .999, .997, 1.001, 1.002, .998, and 1.004?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
Recommended textbooks for you
Practical Management Science
Operations Management
ISBN:
9781337406659
Author:
WINSTON, Wayne L.
Publisher:
Cengage,
Operations Management
Operations Management
ISBN:
9781259667473
Author:
William J Stevenson
Publisher:
McGraw-Hill Education
Operations and Supply Chain Management (Mcgraw-hi…
Operations Management
ISBN:
9781259666100
Author:
F. Robert Jacobs, Richard B Chase
Publisher:
McGraw-Hill Education
Practical Management Science
Operations Management
ISBN:
9781337406659
Author:
WINSTON, Wayne L.
Publisher:
Cengage,
Operations Management
Operations Management
ISBN:
9781259667473
Author:
William J Stevenson
Publisher:
McGraw-Hill Education
Operations and Supply Chain Management (Mcgraw-hi…
Operations Management
ISBN:
9781259666100
Author:
F. Robert Jacobs, Richard B Chase
Publisher:
McGraw-Hill Education
Purchasing and Supply Chain Management
Operations Management
ISBN:
9781285869681
Author:
Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. Patterson
Publisher:
Cengage Learning
Production and Operations Analysis, Seventh Editi…
Operations Management
ISBN:
9781478623069
Author:
Steven Nahmias, Tava Lennon Olsen
Publisher:
Waveland Press, Inc.