Solve the problem. -18 H Let a₁ a₂ , and b 17 Determine whether b can be written as a linear combination of a1 and a2. In other words, determine whether weights x₁ and x₂ exist, such that x₁ a₁ + x₂ a₂ = b. Determine the weights x₁ and x₂ if possible. O x₁ = -3, x₂ = 4 O No solution O x1 = -2, x₂ = 3 O x1 = -3, x₂ = 5

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem Statement:**

**Objective:**
Determine if the vector \( b \) can be expressed as a linear combination of the vectors \( a_1 \) and \( a_2 \). In other words, find whether there exist scalars \( x_1 \) and \( x_2 \) such that:
\[ x_1 a_1 + x_2 a_2 = b \]

If possible, determine the weights \( x_1 \) and \( x_2 \).

**Given:**
\[ a_1 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad a_2 = \begin{bmatrix} -3 \\ 2 \end{bmatrix}, \quad b = \begin{bmatrix} -18 \\ 17 \end{bmatrix} \]

**Solution:**
1. Choose the correct option for \( x_1 \) and \( x_2 \) from the following choices:
   - \( x_1 = -3, x_2 = 5 \)
   - \( x_1 = -2, x_2 = 3 \)
   - \( x_1 = -3, x_2 = 4 \)
   - No solution

**Explanation:** 
To determine if \( b \) can be expressed as a linear combination of \( a_1 \) and \( a_2 \), we need to solve the following system of linear equations derived from the expression \( x_1 a_1 + x_2 a_2 = b \):
\[ x_1 \begin{bmatrix} 2 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} -3 \\ 2 \end{bmatrix} = \begin{bmatrix} -18 \\ 17 \end{bmatrix} \]

This results in the system:
\[ 
2x_1 - 3x_2 = -18 \\
3x_1 + 2x_2 = 17 
\]

Solving this system will give us the weights \( x_1 \) and \( x_2 \).
Transcribed Image Text:**Problem Statement:** **Objective:** Determine if the vector \( b \) can be expressed as a linear combination of the vectors \( a_1 \) and \( a_2 \). In other words, find whether there exist scalars \( x_1 \) and \( x_2 \) such that: \[ x_1 a_1 + x_2 a_2 = b \] If possible, determine the weights \( x_1 \) and \( x_2 \). **Given:** \[ a_1 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad a_2 = \begin{bmatrix} -3 \\ 2 \end{bmatrix}, \quad b = \begin{bmatrix} -18 \\ 17 \end{bmatrix} \] **Solution:** 1. Choose the correct option for \( x_1 \) and \( x_2 \) from the following choices: - \( x_1 = -3, x_2 = 5 \) - \( x_1 = -2, x_2 = 3 \) - \( x_1 = -3, x_2 = 4 \) - No solution **Explanation:** To determine if \( b \) can be expressed as a linear combination of \( a_1 \) and \( a_2 \), we need to solve the following system of linear equations derived from the expression \( x_1 a_1 + x_2 a_2 = b \): \[ x_1 \begin{bmatrix} 2 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} -3 \\ 2 \end{bmatrix} = \begin{bmatrix} -18 \\ 17 \end{bmatrix} \] This results in the system: \[ 2x_1 - 3x_2 = -18 \\ 3x_1 + 2x_2 = 17 \] Solving this system will give us the weights \( x_1 \) and \( x_2 \).
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,