Solve the model for a driven spring/mass system with damping d²x dt² where m = 1/2, ß = 1, k = 5, and the driving function f is the meander function given below with amplitude 10, and a = π. f(t) m Ox(t) = 2(²-=-= dx + B + kx = f(t), x(0) = 0, x'(0) = 0, dt 10 -10 CO 0 x(t) = 2(4- •* sin(3t) ——* cos(3t) + 4 (-1)^[1 - e - n=1 - e* sin(3t) - O x(t) = 2(1 - * cos(3t) — e - Ox(t) = 2(1 x(t) = 2(1-e* cos(3t) -t ) = 2(1 - e* cos(3t) - 2a * sin(3t)) + 4 -t 3a 00 * cos(3t) + 4 (-1)^[1 - e(t - 2n) sin(3(t - 2nn)) - e(t - 2nr) cos(3(t - 2n)]2(t-2nit) n=1 -t 00 sin(3t)) + 4 (-1) [1- — - - n=1 sin(3t)) 4a 00 n=1 e-(t-nit) sin(3 (t-nit)) - e-(-) cos(3(tn)) (t - nπ) (-1)" [1 -¯(t - m²) cos(3{(t− n)) - e(t - mm) sin(3(t - mi))](t – nr) -e - e-(t-2nn) cos(3(t - 2nπ))--(-2mm) sin(3(t-2nn)) (t-2nn) 3
Solve the model for a driven spring/mass system with damping d²x dt² where m = 1/2, ß = 1, k = 5, and the driving function f is the meander function given below with amplitude 10, and a = π. f(t) m Ox(t) = 2(²-=-= dx + B + kx = f(t), x(0) = 0, x'(0) = 0, dt 10 -10 CO 0 x(t) = 2(4- •* sin(3t) ——* cos(3t) + 4 (-1)^[1 - e - n=1 - e* sin(3t) - O x(t) = 2(1 - * cos(3t) — e - Ox(t) = 2(1 x(t) = 2(1-e* cos(3t) -t ) = 2(1 - e* cos(3t) - 2a * sin(3t)) + 4 -t 3a 00 * cos(3t) + 4 (-1)^[1 - e(t - 2n) sin(3(t - 2nn)) - e(t - 2nr) cos(3(t - 2n)]2(t-2nit) n=1 -t 00 sin(3t)) + 4 (-1) [1- — - - n=1 sin(3t)) 4a 00 n=1 e-(t-nit) sin(3 (t-nit)) - e-(-) cos(3(tn)) (t - nπ) (-1)" [1 -¯(t - m²) cos(3{(t− n)) - e(t - mm) sin(3(t - mi))](t – nr) -e - e-(t-2nn) cos(3(t - 2nπ))--(-2mm) sin(3(t-2nn)) (t-2nn) 3
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,