Solve the initial value problem. 5 -2 2. X' = AX, X(0) = where A = 10 -2 O A. X(t): [-2 sin 5t + 4 cos 5t] e-2t 4 cos 5t + 8 sin 5t [-2 sin 5t + 4 cos 5t] e2t 4 cos 5t + 8 sin 5t B. X(t) = [2 sin 5t + -4 cos 5t] O C. X(t): -4 cos 5t - 8 sin 5t e2t [2 sin 5t - 4 cos 5t e-2t D. X(t) = 4 cos 5t - 8 sin 5t

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Solve the initial value problem.
5
-2
2.
X' = AX, X(0) =
where A =
10
-2
[-2 sin 5t + 4 cos 5t]
e-2t
A. X(t) =
4 cos 5t + 8 sin 5t
[-2 sin 5t + 4 cos 5t]
e2t
4 cos 5t + 8 sin 5t
B. X(t) =
%3D
[2 sin 5t + -4 cos 5t]
e2t
-4 cos 5t - 8 sin 5t
C. X(t) =
[2 sin 5t - 4 cos 5t
le-2t
D. X(t) =
%3D
4 cos 5t - 8 sin 5t
Transcribed Image Text:Solve the initial value problem. 5 -2 2. X' = AX, X(0) = where A = 10 -2 [-2 sin 5t + 4 cos 5t] e-2t A. X(t) = 4 cos 5t + 8 sin 5t [-2 sin 5t + 4 cos 5t] e2t 4 cos 5t + 8 sin 5t B. X(t) = %3D [2 sin 5t + -4 cos 5t] e2t -4 cos 5t - 8 sin 5t C. X(t) = [2 sin 5t - 4 cos 5t le-2t D. X(t) = %3D 4 cos 5t - 8 sin 5t
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 5 images

Blurred answer
Knowledge Booster
Differential Equation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,