Solve the given linear programming problem using the table method. 1) Maximize P= 7x1 + 6x2 1) subject to 3x1 + x2 s 21 X1 + x2 s 10 x1 + 2x2 s 12 x1, x2 2 0 A) Max P = 66 at x1 = 6, x2 = 4 В) Маx Р - 68 аt xj 8, х2 2 С) Маx Р «65.5 at x 5.5, х2 - 45 D) Max P- 60 at xj 6, х2 3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Certainly! Below is the transcription of the image as it would appear on an educational website, along with detailed explanations of the tables:

---

### Linear Programming Problem

#### 1) Solve the given linear programming problem using the table method.

**Objective:** Maximize \( P = 7x_1 + 6x_2 \)

**Subject to:**
- \( 3x_1 + x_2 \leq 21 \)
- \( x_1 + x_2 \leq 10 \)
- \( x_1 + 2x_2 \leq 12 \)
- \( x_1, x_2 \geq 0 \)

**Options for Maximum \( P \):**
- **A)** \( \text{Max } P = 66 \text{ at } x_1 = 6, x_2 = 5 \)
- **B)** \( \text{Max } P = 68 \text{ at } x_1 = 8, x_2 = 2 \)
- **C)** \( \text{Max } P = 65.5 \text{ at } x_1 = 5.5, x_2 = 4.5 \)
- **D)** \( \text{Max } P = 60 \text{ at } x_1 = 6, x_2 = 3 \)

---

#### 2) Convert the given i-system to an e-system using slack variables. Construct a table of all basic solutions of the e-system. Indicate whether each basic solution is feasible.

**Linear Inequality:** \( 9x_1 + 7x_2 \leq 63 \)

**Conditions:** \( x_1, x_2 \geq 0 \)

**Tables for Basic Solutions:**

- **A)** 
  - **Equation:** \( 9x_1 + 7x_2 + s_1 = 63 \)

  \[
  \begin{array}{c|ccc}
  & x_1 & x_2 & s_1 \\
  \hline
  (A) & 0 & 0 & 63 \\
  (B) & 0 & 7 & 0 \\
  (C) & 9 & 0 & 0 \\
  \end{array}
  \]

  -
Transcribed Image Text:Certainly! Below is the transcription of the image as it would appear on an educational website, along with detailed explanations of the tables: --- ### Linear Programming Problem #### 1) Solve the given linear programming problem using the table method. **Objective:** Maximize \( P = 7x_1 + 6x_2 \) **Subject to:** - \( 3x_1 + x_2 \leq 21 \) - \( x_1 + x_2 \leq 10 \) - \( x_1 + 2x_2 \leq 12 \) - \( x_1, x_2 \geq 0 \) **Options for Maximum \( P \):** - **A)** \( \text{Max } P = 66 \text{ at } x_1 = 6, x_2 = 5 \) - **B)** \( \text{Max } P = 68 \text{ at } x_1 = 8, x_2 = 2 \) - **C)** \( \text{Max } P = 65.5 \text{ at } x_1 = 5.5, x_2 = 4.5 \) - **D)** \( \text{Max } P = 60 \text{ at } x_1 = 6, x_2 = 3 \) --- #### 2) Convert the given i-system to an e-system using slack variables. Construct a table of all basic solutions of the e-system. Indicate whether each basic solution is feasible. **Linear Inequality:** \( 9x_1 + 7x_2 \leq 63 \) **Conditions:** \( x_1, x_2 \geq 0 \) **Tables for Basic Solutions:** - **A)** - **Equation:** \( 9x_1 + 7x_2 + s_1 = 63 \) \[ \begin{array}{c|ccc} & x_1 & x_2 & s_1 \\ \hline (A) & 0 & 0 & 63 \\ (B) & 0 & 7 & 0 \\ (C) & 9 & 0 & 0 \\ \end{array} \] -
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,