Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Topic Video
Question
![### Calculus: Evaluating Limits
#### Problem Statement:
Solve the limit:
\[
\lim_{{h \to 0}} \frac{{2\sqrt{{16 + h}} - 8}}{h}
\]
#### Solution Explanation:
To solve the limit \(\lim_{{h \to 0}} \frac{{2\sqrt{{16 + h}} - 8}}{h}\), follow these steps:
1. **Substitution Method**:
Direct substitution of \( h = 0 \) in the given function \(\frac{2\sqrt{16+h} - 8}{h}\) results in an indeterminate form \(\frac{0}{0}\). Therefore, we need to find another method to simplify the expression.
2. **Rationalizing the Numerator**:
To eliminate the square root in the numerator, multiply both the numerator and the denominator by the conjugate of the numerator. The conjugate in this case is \(2\sqrt{16+h} + 8\).
\[
\frac{2\sqrt{16+h} - 8}{h} \cdot \frac{2\sqrt{16+h} + 8}{2\sqrt{16+h} + 8}
\]
3. **Simplification**:
The product of conjugates will give us a difference of squares in the numerator:
\[
= \frac{(2\sqrt{16+h} - 8)(2\sqrt{16+h} + 8)}{h(2\sqrt{16+h} + 8)}
\]
\[
= \frac{(2\sqrt{16+h})^2 - 8^2}{h(2\sqrt{16+h} + 8)}
\]
\[
= \frac{4(16+h) - 64}{h(2\sqrt{16+h} + 8)}
\]
Simplifying inside the numerator:
\[
= \frac{64 + 4h - 64}{h(2\sqrt{16+h} + 8)}
\]
\[
= \frac{4h}{h(2\sqrt{16+h} + 8)}
\]
Cancelling \( h \) from numerator and denominator:
\[
= \frac{4}{](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F0b8b635d-64c7-420e-93b9-2c6bfd1ef1b9%2Ff976cbf9-b764-43d0-ab65-c198783e5fc8%2Fm9xpi8_reoriented.jpeg&w=3840&q=75)
Transcribed Image Text:### Calculus: Evaluating Limits
#### Problem Statement:
Solve the limit:
\[
\lim_{{h \to 0}} \frac{{2\sqrt{{16 + h}} - 8}}{h}
\]
#### Solution Explanation:
To solve the limit \(\lim_{{h \to 0}} \frac{{2\sqrt{{16 + h}} - 8}}{h}\), follow these steps:
1. **Substitution Method**:
Direct substitution of \( h = 0 \) in the given function \(\frac{2\sqrt{16+h} - 8}{h}\) results in an indeterminate form \(\frac{0}{0}\). Therefore, we need to find another method to simplify the expression.
2. **Rationalizing the Numerator**:
To eliminate the square root in the numerator, multiply both the numerator and the denominator by the conjugate of the numerator. The conjugate in this case is \(2\sqrt{16+h} + 8\).
\[
\frac{2\sqrt{16+h} - 8}{h} \cdot \frac{2\sqrt{16+h} + 8}{2\sqrt{16+h} + 8}
\]
3. **Simplification**:
The product of conjugates will give us a difference of squares in the numerator:
\[
= \frac{(2\sqrt{16+h} - 8)(2\sqrt{16+h} + 8)}{h(2\sqrt{16+h} + 8)}
\]
\[
= \frac{(2\sqrt{16+h})^2 - 8^2}{h(2\sqrt{16+h} + 8)}
\]
\[
= \frac{4(16+h) - 64}{h(2\sqrt{16+h} + 8)}
\]
Simplifying inside the numerator:
\[
= \frac{64 + 4h - 64}{h(2\sqrt{16+h} + 8)}
\]
\[
= \frac{4h}{h(2\sqrt{16+h} + 8)}
\]
Cancelling \( h \) from numerator and denominator:
\[
= \frac{4}{
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 5 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning