Find the limit. lim t-3 √/3-ti + In(t)j-1k)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Find the limit Lim t->3 ( square root 3 - t i + ln(t) - 1/t k)
### Limit Calculation

To solve the problem, find the limit as \( t \) approaches 3 for the given vector-valued function:

\[
\lim_{{t \to 3}} \left( \sqrt{3} - ti + \ln(t) j - \frac{1}{t} k \right)
\]

Breaking down the limit into its components and finding each separately:

1. **For the \(i\)-component:**

\[
\sqrt{3} - t
\]

As \( t \) approaches 3:

\[
\sqrt{3} - 3
\]

2. **For the \(j\)-component:**

\[
\ln(t)
\]

As \( t \) approaches 3:

\[
\ln(3)
\]

3. **For the \(k\)-component:**

\[
-\frac{1}{t}
\]

As \( t \) approaches 3:

\[
-\frac{1}{3}
\]

### Combined Limit

Combining the results from each component:

\[
\lim_{{t \to 3}} \left( \sqrt{3} - ti + \ln(t) j - \frac{1}{t} k \right) 
= \left( \sqrt{3} - 3 \right) i + (\ln(3)) j - \left( \frac{1}{3} \right) k
\]

### Final Result:

\[
-3i + \ln(3) j - \frac{1}{3} k
\]
Transcribed Image Text:### Limit Calculation To solve the problem, find the limit as \( t \) approaches 3 for the given vector-valued function: \[ \lim_{{t \to 3}} \left( \sqrt{3} - ti + \ln(t) j - \frac{1}{t} k \right) \] Breaking down the limit into its components and finding each separately: 1. **For the \(i\)-component:** \[ \sqrt{3} - t \] As \( t \) approaches 3: \[ \sqrt{3} - 3 \] 2. **For the \(j\)-component:** \[ \ln(t) \] As \( t \) approaches 3: \[ \ln(3) \] 3. **For the \(k\)-component:** \[ -\frac{1}{t} \] As \( t \) approaches 3: \[ -\frac{1}{3} \] ### Combined Limit Combining the results from each component: \[ \lim_{{t \to 3}} \left( \sqrt{3} - ti + \ln(t) j - \frac{1}{t} k \right) = \left( \sqrt{3} - 3 \right) i + (\ln(3)) j - \left( \frac{1}{3} \right) k \] ### Final Result: \[ -3i + \ln(3) j - \frac{1}{3} k \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,