SOLUTION: A vector equation of the circular helix is R(t) = a cos ti + a sin tj + tk So D,R(t) =-a sin ti + a cos tj + k and |D,R(t)|= Va +1. From (3) we get T(t) = Vat + (-a sin ti + a cos tj + k) NSIONAL SPACE AND SOLID ANALYTIC GEOMETRY So D,T(t) = VI (-a cos ti – a sin tj) Applying (8), we obtain K(t) a² +1 (-a cos ti -- a sin tj) The curvature, then, is given by K(t) = |K(t)| = and so the curvature of the circular helix is constant. From (11) we get N(t) =-cos ti – sin tj Applying (12), we have B() = VT (-a sin ti + a cos tj + k) × (-cos ti – sin tj) Va? +1 1 Va + 1 (sin ti – cos tj + ak) - COS

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

Please show the complete solution on the highlighted part  on how they arrived such solution for an upvote. Ty!

SOLUTION: A vector equation of the circular helix is
R(t) = a cos ti + a sin tj + tk
So D,R(t) =-a sin ti + a cos tj + k and |D,R(t)|= Va +1. From (3) we
get
T(t) =
Vat +
(-a sin ti + a cos tj + k)
NSIONAL SPACE AND SOLID ANALYTIC GEOMETRY
So
D,T(t) = VI
(-a cos ti – a sin tj)
Applying (8), we obtain
K(t)
a² +1
(-a cos ti -- a sin tj)
The curvature, then, is given by
K(t) = |K(t)| =
and so the curvature of the circular helix is constant. From (11) we get
N(t) =-cos ti – sin tj
Applying (12), we have
B() = VT
(-a sin ti + a cos tj + k) × (-cos ti – sin tj)
Va? +1
1
Va + 1
(sin ti – cos tj + ak)
- COS
Transcribed Image Text:SOLUTION: A vector equation of the circular helix is R(t) = a cos ti + a sin tj + tk So D,R(t) =-a sin ti + a cos tj + k and |D,R(t)|= Va +1. From (3) we get T(t) = Vat + (-a sin ti + a cos tj + k) NSIONAL SPACE AND SOLID ANALYTIC GEOMETRY So D,T(t) = VI (-a cos ti – a sin tj) Applying (8), we obtain K(t) a² +1 (-a cos ti -- a sin tj) The curvature, then, is given by K(t) = |K(t)| = and so the curvature of the circular helix is constant. From (11) we get N(t) =-cos ti – sin tj Applying (12), we have B() = VT (-a sin ti + a cos tj + k) × (-cos ti – sin tj) Va? +1 1 Va + 1 (sin ti – cos tj + ak) - COS
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,