SOLUTION: A vector equation of the circular helix is R(t) = a cos ti + a sin tj + tk So D,R(t) =-a sin ti + a cos tj + k and |D,R(t)|= Va +1. From (3) we get T(t) = Vat + (-a sin ti + a cos tj + k) NSIONAL SPACE AND SOLID ANALYTIC GEOMETRY So D,T(t) = VI (-a cos ti – a sin tj) Applying (8), we obtain K(t) a² +1 (-a cos ti -- a sin tj) The curvature, then, is given by K(t) = |K(t)| = and so the curvature of the circular helix is constant. From (11) we get N(t) =-cos ti – sin tj Applying (12), we have B() = VT (-a sin ti + a cos tj + k) × (-cos ti – sin tj) Va? +1 1 Va + 1 (sin ti – cos tj + ak) - COS
SOLUTION: A vector equation of the circular helix is R(t) = a cos ti + a sin tj + tk So D,R(t) =-a sin ti + a cos tj + k and |D,R(t)|= Va +1. From (3) we get T(t) = Vat + (-a sin ti + a cos tj + k) NSIONAL SPACE AND SOLID ANALYTIC GEOMETRY So D,T(t) = VI (-a cos ti – a sin tj) Applying (8), we obtain K(t) a² +1 (-a cos ti -- a sin tj) The curvature, then, is given by K(t) = |K(t)| = and so the curvature of the circular helix is constant. From (11) we get N(t) =-cos ti – sin tj Applying (12), we have B() = VT (-a sin ti + a cos tj + k) × (-cos ti – sin tj) Va? +1 1 Va + 1 (sin ti – cos tj + ak) - COS
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
Please show the complete solution on the highlighted part on how they arrived such solution for an upvote. Ty!

Transcribed Image Text:SOLUTION: A vector equation of the circular helix is
R(t) = a cos ti + a sin tj + tk
So D,R(t) =-a sin ti + a cos tj + k and |D,R(t)|= Va +1. From (3) we
get
T(t) =
Vat +
(-a sin ti + a cos tj + k)
NSIONAL SPACE AND SOLID ANALYTIC GEOMETRY
So
D,T(t) = VI
(-a cos ti – a sin tj)
Applying (8), we obtain
K(t)
a² +1
(-a cos ti -- a sin tj)
The curvature, then, is given by
K(t) = |K(t)| =
and so the curvature of the circular helix is constant. From (11) we get
N(t) =-cos ti – sin tj
Applying (12), we have
B() = VT
(-a sin ti + a cos tj + k) × (-cos ti – sin tj)
Va? +1
1
Va + 1
(sin ti – cos tj + ak)
- COS
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

