SOLUTION: A vector equation of the circular helix is R(t) = a cos ti + a sin tj + tk So D,R(t) =-a sin ti + a cos tj + k and |D,R(t)|= Va +1. From (3) we get T(t) = Vat + (-a sin ti + a cos tj + k) NSIONAL SPACE AND SOLID ANALYTIC GEOMETRY So D,T(t) = VI (-a cos ti – a sin tj) Applying (8), we obtain K(t) a² +1 (-a cos ti -- a sin tj) The curvature, then, is given by K(t) = |K(t)| = and so the curvature of the circular helix is constant. From (11) we get N(t) =-cos ti – sin tj Applying (12), we have B() = VT (-a sin ti + a cos tj + k) × (-cos ti – sin tj) Va? +1 1 Va + 1 (sin ti – cos tj + ak) - COS
SOLUTION: A vector equation of the circular helix is R(t) = a cos ti + a sin tj + tk So D,R(t) =-a sin ti + a cos tj + k and |D,R(t)|= Va +1. From (3) we get T(t) = Vat + (-a sin ti + a cos tj + k) NSIONAL SPACE AND SOLID ANALYTIC GEOMETRY So D,T(t) = VI (-a cos ti – a sin tj) Applying (8), we obtain K(t) a² +1 (-a cos ti -- a sin tj) The curvature, then, is given by K(t) = |K(t)| = and so the curvature of the circular helix is constant. From (11) we get N(t) =-cos ti – sin tj Applying (12), we have B() = VT (-a sin ti + a cos tj + k) × (-cos ti – sin tj) Va? +1 1 Va + 1 (sin ti – cos tj + ak) - COS
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
Please show the complete solution on the highlighted part on how they arrived such solution for an upvote. Ty!
![SOLUTION: A vector equation of the circular helix is
R(t) = a cos ti + a sin tj + tk
So D,R(t) =-a sin ti + a cos tj + k and |D,R(t)|= Va +1. From (3) we
get
T(t) =
Vat +
(-a sin ti + a cos tj + k)
NSIONAL SPACE AND SOLID ANALYTIC GEOMETRY
So
D,T(t) = VI
(-a cos ti – a sin tj)
Applying (8), we obtain
K(t)
a² +1
(-a cos ti -- a sin tj)
The curvature, then, is given by
K(t) = |K(t)| =
and so the curvature of the circular helix is constant. From (11) we get
N(t) =-cos ti – sin tj
Applying (12), we have
B() = VT
(-a sin ti + a cos tj + k) × (-cos ti – sin tj)
Va? +1
1
Va + 1
(sin ti – cos tj + ak)
- COS](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F1f327798-ea06-4161-a5dd-01a5b8028b73%2F115728d4-9798-4643-b6fe-fb701807dc32%2Fxtbxee6_processed.png&w=3840&q=75)
Transcribed Image Text:SOLUTION: A vector equation of the circular helix is
R(t) = a cos ti + a sin tj + tk
So D,R(t) =-a sin ti + a cos tj + k and |D,R(t)|= Va +1. From (3) we
get
T(t) =
Vat +
(-a sin ti + a cos tj + k)
NSIONAL SPACE AND SOLID ANALYTIC GEOMETRY
So
D,T(t) = VI
(-a cos ti – a sin tj)
Applying (8), we obtain
K(t)
a² +1
(-a cos ti -- a sin tj)
The curvature, then, is given by
K(t) = |K(t)| =
and so the curvature of the circular helix is constant. From (11) we get
N(t) =-cos ti – sin tj
Applying (12), we have
B() = VT
(-a sin ti + a cos tj + k) × (-cos ti – sin tj)
Va? +1
1
Va + 1
(sin ti – cos tj + ak)
- COS
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)