Skills Warm-up Exercises N In Problems 1-6, write each expression as a quotient of integers, reduced to lowest terms. (If necessary, review Section A.1.) 1. 3. 5. 1 3 1 3 1 1 1 3 2 ÷ + 1 1 43 54 43 - + 53 54 Start = 2. .6 4. 6. M 1 N 4 2 7 NI + 7. P(MMA) = P(M)P(A|M) 8. P(NB) = P(N)P(B|N) 9. P(A) = P(MOA) + P(NA) 10. P(B) = P(MB) + P(NB) 11. P(MA): 2 ÷ A Find the probabilities in Problems 7-12 by referring to the tree diagram below. |2|71|4 12 53 .7 12 4 1 + 53 54 .3 .2 + .8 P(MMA) P(MOA) + P(NA) P(NOR) 2 7 A B A B 13. P(U₁|R) 15. P(U₁|R') 17. P(U|C) 19. P(W|C) 21. P(VIC) Start U₁ 15 Start .6 25 B Find the probabilities in Problems 17-22 by referring to t lowing tree diagram and using Bayes' formula. Round an three decimal places. .3 U R 35 14. P(U₂ R) 16. P(U₂ R') V 25 W .4 .6 .5 U₂ 5 .2 .8 с C C' 18. P(V|C') 20. P(U|C') 22. P(W|C') Find the probabilities in Problems 23-28 by referring to t diagram below. C D

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question

please help with #14

Skills Warm-up Exercises
WIn Problems 1-6, write each expression as a quotient of integers,
reduced to lowest terms. (If necessary, review Section A.1.)
3.
5.
1
3
+
1
÷ +
3
43
54
1 1
43
53 54
+
1
2
12. P(NB)
=
Start
=
2.
.6
4.
6.
M
1
N
4
2
7
7. P(MÑA) = P(M)P(A|M)
8. P(NB) = P(N)P(B|N)
9. P(A) = P(MOA) + P(NÑA)
10. P(B) = P(MNB) + P(NOB)
11. P(MA)
A Find the probabilities in Problems 7-12 by referring to the tree
diagram below.
2
7
+
응
12
4 1
+
53 54
1 2
+
4 7
12
53
.7
.3
.2
|2|-|
.8
P(MOA)
P(MOA) + P(NA)
7
P(NB)
P(NB) + P(MNB)
A
B
A
B
Find the probabilities in Problems 13-16 by referring to the fol-
lowing Venn diagram and using Bayes' formula (assume that the
simple events in S are equally likely):
13. P(U₁|R)
15. P(U₁|R')
17. P(U|C)
19. P(W|C)
21. P(V|C)
Start
23. P(A)
25. P(C)
27. P(A|C)
15
Start
B Find the probabilities in Problems 17-22 by referring to t
lowing tree diagram and using Bayes' formula. Round an
three decimal places.
.1
.6
25
.3
R
35
W
25
14. P(U₂ R)
16. P(U₂ R')
B
.4
.6
.5
U₂
.5
.2
.8
C
Find the probabilities in Problems 23-28 by referring to t
diagram below.
C'
с
18. P(V|C')
20. P(U|C')
22. P(W|C')
C'
24. P(B)
26. P(D)
28. P(BD)
D
C
D
Transcribed Image Text:Skills Warm-up Exercises WIn Problems 1-6, write each expression as a quotient of integers, reduced to lowest terms. (If necessary, review Section A.1.) 3. 5. 1 3 + 1 ÷ + 3 43 54 1 1 43 53 54 + 1 2 12. P(NB) = Start = 2. .6 4. 6. M 1 N 4 2 7 7. P(MÑA) = P(M)P(A|M) 8. P(NB) = P(N)P(B|N) 9. P(A) = P(MOA) + P(NÑA) 10. P(B) = P(MNB) + P(NOB) 11. P(MA) A Find the probabilities in Problems 7-12 by referring to the tree diagram below. 2 7 + 응 12 4 1 + 53 54 1 2 + 4 7 12 53 .7 .3 .2 |2|-| .8 P(MOA) P(MOA) + P(NA) 7 P(NB) P(NB) + P(MNB) A B A B Find the probabilities in Problems 13-16 by referring to the fol- lowing Venn diagram and using Bayes' formula (assume that the simple events in S are equally likely): 13. P(U₁|R) 15. P(U₁|R') 17. P(U|C) 19. P(W|C) 21. P(V|C) Start 23. P(A) 25. P(C) 27. P(A|C) 15 Start B Find the probabilities in Problems 17-22 by referring to t lowing tree diagram and using Bayes' formula. Round an three decimal places. .1 .6 25 .3 R 35 W 25 14. P(U₂ R) 16. P(U₂ R') B .4 .6 .5 U₂ .5 .2 .8 C Find the probabilities in Problems 23-28 by referring to t diagram below. C' с 18. P(V|C') 20. P(U|C') 22. P(W|C') C' 24. P(B) 26. P(D) 28. P(BD) D C D
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON