) Sketch the directional field of the equation. (Preferably, using the isoclines you found in (a)).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Use 2, 1,-1,-2,0

Consider the differential equation y'= 1-y.
Transcribed Image Text:Consider the differential equation y'= 1-y.
) Sketch the directional field of the equation. (Preferably, using the isoclines you found in (a)).
Transcribed Image Text:) Sketch the directional field of the equation. (Preferably, using the isoclines you found in (a)).
Expert Solution
Step 1: MATLAB code:

Sketching directional field using MATLAB.

To sketch the directional field of the differential equation  at the points  using MATLAB, you can follow these steps:

  1. Open MATLAB.

  2. Define the differential equation .

  3. Create a grid of points  where Error converting from MathML to accessible text. takes the values .

  4. Calculate the corresponding  values using the differential equation.

  5. Use the quiver function to plot the directional field using the calculated Error converting from MathML to accessible text. and  values.

Here's the MATLAB code to accomplish this:

% Define the differential equation
dydt = @(y) 1 - y;

% List of y values
yValues = [2, 1, -1, -2, 0];

% Create a grid of points
[y, yprime] = meshgrid(yValues, dydt(yValues));

% Calculate the corresponding y' values
yprime = dydt(y);

% Plot the directional field
quiver(y, yprime, ones(size(y)), yprime, 0.5, 'b');
hold on;
plot(yValues, dydt(yValues), 'ro', 'MarkerSize', 8);
xlabel('y');
ylabel("y'");
title("Directional Field of y' = 1 - y");
grid on;
hold off;

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,