Situation 3: Find the frequency. a. b. a. 0.888 Hz b. 0.388 Hz Find the spring constant. 0.233 N/m C. 0.483 N/m d. Determine the maximum speed of the mass. 0.4435 m/s 0.1485 m/s A 50-g mass vibrates in SHM at the end of a spring. The amplitude of the motion is 12 cm, and the period is 1.70 s. a. b. a. b. a. C. d. 0.2411 m/s 0.6311 m/s Determine the maximum absolute acceleration of the mass. 1.4322 m/s² 1.6392 m/s² Determine the speed when the displacement if 6.0 cm. 0.0241 m/s C. 0.3341 m/s C. d. 0.588 Hz 0.088 Hz C. d. 0.113 N/m 0.683 N/m 1.8372 m/s² 1.1312 m/s²
Simple harmonic motion
Simple harmonic motion is a type of periodic motion in which an object undergoes oscillatory motion. The restoring force exerted by the object exhibiting SHM is proportional to the displacement from the equilibrium position. The force is directed towards the mean position. We see many examples of SHM around us, common ones are the motion of a pendulum, spring and vibration of strings in musical instruments, and so on.
Simple Pendulum
A simple pendulum comprises a heavy mass (called bob) attached to one end of the weightless and flexible string.
Oscillation
In Physics, oscillation means a repetitive motion that happens in a variation with respect to time. There is usually a central value, where the object would be at rest. Additionally, there are two or more positions between which the repetitive motion takes place. In mathematics, oscillations can also be described as vibrations. The most common examples of oscillation that is seen in daily lives include the alternating current (AC) or the motion of a moving pendulum.
Step by step
Solved in 4 steps with 4 images