sin(0-a) + 3 sin 0+ sin(0 + a) cos(-a) +3 cos 0 + cos(0 + a) (i) Prove that =tan 0 for all values of a. (ii) Find the exact value of 4 sin 149° + 12 sin 150° +4 sin 151° 3 cos 149° +9 cos 150° +3 cos 151° (iii) It is given that k is a positive constant. Solve, for 0° < 0 < 60° and in terms of k, the equatic sin(60-15°) + 3 sin 60+ sin(60+ 15°) cos(60-15°) +3 cos 60+ cos(60+ 15°) =k.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Q3
(i) Prove that
=tan 0 for all values of a.
4 sin 149° + 12 sin 150° + 4 sin 151°
(ii) Find the exact value of
3 cos 149° +9 cos 150° +3 cos 151°*
(iii) It is given that k is a positive constant. Solve, for 0° < 0 < 60° and in terms of k, the equatic
sin(60-15°) + 3 sin 60+ sin(60+ 15°)
cos(60-15°) + 3 cos 60+ cos(60 + 15°)
= k.
H
sin(0-a) + 3 sin 0 + sin(0 + a)
cos(-a) +3 cos 0 + cos(0 + a)
a
U
C
Transcribed Image Text:Q3 (i) Prove that =tan 0 for all values of a. 4 sin 149° + 12 sin 150° + 4 sin 151° (ii) Find the exact value of 3 cos 149° +9 cos 150° +3 cos 151°* (iii) It is given that k is a positive constant. Solve, for 0° < 0 < 60° and in terms of k, the equatic sin(60-15°) + 3 sin 60+ sin(60+ 15°) cos(60-15°) + 3 cos 60+ cos(60 + 15°) = k. H sin(0-a) + 3 sin 0 + sin(0 + a) cos(-a) +3 cos 0 + cos(0 + a) a U C
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,