Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Topic Video
Question
### Problem Description

You are given the following trigonometric equation:

\[
\sin a = \frac{11}{61}, \quad 0 < a < \frac{\pi}{2}
\]

### Task

Calculate the following half-angle trigonometric functions:

#### Part 1 of 3

(a) Compute \(\sin \frac{a}{2}\).

\[ \sin \frac{a}{2} = \square \]

#### Part 2 of 3

(b) Compute \(\cos \frac{a}{2}\).

\[ \cos \frac{a}{2} = \square \]

#### Part 3 of 3

(c) Compute \(\tan \frac{a}{2}\).

\[ \tan \frac{a}{2} = \square \]

### Instructions

Use the half-angle formulas in trigonometry to solve for each part. The formulas are:

- \(\sin \frac{a}{2} = \pm \sqrt{\frac{1 - \cos a}{2}}\)
- \(\cos \frac{a}{2} = \pm \sqrt{\frac{1 + \cos a}{2}}\)
- \(\tan \frac{a}{2} = \frac{1 - \cos a}{\sin a} = \frac{\sin a}{1 + \cos a}\)

Ensure to verify the sign based on the given range for \(a\).
Transcribed Image Text:### Problem Description You are given the following trigonometric equation: \[ \sin a = \frac{11}{61}, \quad 0 < a < \frac{\pi}{2} \] ### Task Calculate the following half-angle trigonometric functions: #### Part 1 of 3 (a) Compute \(\sin \frac{a}{2}\). \[ \sin \frac{a}{2} = \square \] #### Part 2 of 3 (b) Compute \(\cos \frac{a}{2}\). \[ \cos \frac{a}{2} = \square \] #### Part 3 of 3 (c) Compute \(\tan \frac{a}{2}\). \[ \tan \frac{a}{2} = \square \] ### Instructions Use the half-angle formulas in trigonometry to solve for each part. The formulas are: - \(\sin \frac{a}{2} = \pm \sqrt{\frac{1 - \cos a}{2}}\) - \(\cos \frac{a}{2} = \pm \sqrt{\frac{1 + \cos a}{2}}\) - \(\tan \frac{a}{2} = \frac{1 - \cos a}{\sin a} = \frac{\sin a}{1 + \cos a}\) Ensure to verify the sign based on the given range for \(a\).
Expert Solution
Step 1

Calculate the valuer for angle α using the inverse of the sine function.

sin α=1161α=sin11161α=sin10.18α=10.389°

Then, determine the values for sinα2 and cosα2.

(a)

sinα2=sin10.389°2=sin5.194°=0.0905So, sinα2=0.0905

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Discrete Probability Distributions
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, trigonometry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning