Shown in the figure, an insulated rigid tank is divided into two equal parts by a partition. Initially, one part contains an indeal gas, and the other part is evacuated. The partition is then removed, and the gas expands into the entire tank. At the initial state, the mass of the gas is m= 4.00kg, initial pressure is p1 = 600.00 kPa, initial temperature is T1 = 300.00 K. The gas constant is R = 0.2870 kJ/(kg-K). (The internal energy can be determined by the equation AU=m-cy (T2-T1), where cy= 0.7180 kJ/(kg-K) is the specific heat at the constant volume.) Calculate the final state temperature T2. Ideal gas FOSE T1 P1 V1 m State 1 Evacuated (K) Ideal gas T2=? P2=? V2=2V1 State 2
Shown in the figure, an insulated rigid tank is divided into two equal parts by a partition. Initially, one part contains an indeal gas, and the other part is evacuated. The partition is then removed, and the gas expands into the entire tank. At the initial state, the mass of the gas is m= 4.00kg, initial pressure is p1 = 600.00 kPa, initial temperature is T1 = 300.00 K. The gas constant is R = 0.2870 kJ/(kg-K). (The internal energy can be determined by the equation AU=m-cy (T2-T1), where cy= 0.7180 kJ/(kg-K) is the specific heat at the constant volume.) Calculate the final state temperature T2. Ideal gas FOSE T1 P1 V1 m State 1 Evacuated (K) Ideal gas T2=? P2=? V2=2V1 State 2
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
Shown in the figure, an insulated rigid tank is divided into two equal parts by a partition. Initially, one part contains an indeal gas, and the other part is evacuated. The partition is then removed, and the gas expands into the entire tank. At the initial state, the mass of the gas is m= 4.00kg, initial pressure is p1 = 600.00 kPa, initial temperature is T1 = 300.00 K. The gas constant is R = 0.2870 kJ/(kg·K). (The internal energy can be determined by the equation ΔU=m·cv·(T2-T1), where cv = 0.7180 kJ/(kg·K) is the specific heat at the constant volume.)
Calculate the final state temperature T2.__________ (K)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY