Show that the equation x - 17x +c = 0 has at most one solution in the interval [-2, 2]. Let f(x) = x - 17x + c for x in [-2, 2]. If f has two real solutions a and b in [-2, 2], with a < b, then --Select-- v. Since the polynomial f is continuous on [a, b] and differentiable on (a, b), --Select--- ) implies that there is a number r in (a, b) such that f'(r) = 0. Now f'(r) = . Since r is in (a, b), which is contained in [-2, 2], we have Irl < 2, so r² < 4. It follows that 3r2 - 17 ?v 3.4 – 17 = -5 ?v 0. This contradicts f'(r) = 0, so the given equation cannot have two real solutions in [-2, 2]. Hence, it has at most one real solution in [-2, 2].
Show that the equation x - 17x +c = 0 has at most one solution in the interval [-2, 2]. Let f(x) = x - 17x + c for x in [-2, 2]. If f has two real solutions a and b in [-2, 2], with a < b, then --Select-- v. Since the polynomial f is continuous on [a, b] and differentiable on (a, b), --Select--- ) implies that there is a number r in (a, b) such that f'(r) = 0. Now f'(r) = . Since r is in (a, b), which is contained in [-2, 2], we have Irl < 2, so r² < 4. It follows that 3r2 - 17 ?v 3.4 – 17 = -5 ?v 0. This contradicts f'(r) = 0, so the given equation cannot have two real solutions in [-2, 2]. Hence, it has at most one real solution in [-2, 2].
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![Show that the equation x3 - 17x + c = 0 has at most one solution in the interval [-2, 2].
Let f(x) = x - 17x + c for x in [-2, 2]. If f has two real solutions a and b in [-2, 2], with a < b, then -Select---
polynomial f is continuous on [a, b] and differentiable on (a, b), -Select--
v. Since the
) implies that there is a number r in (a, b)
such that f'(r) = 0.
Now f'(r) =
. Since r is in (a, b), which is contained in [-2, 2], we have Irl < 2, so r? < 4. It follows that
3r2 - 17 ?v 3 ·4 - 17 = -5 ?v 0. This contradicts f'(r) = 0, so the given equation cannot have two real solutions in [-2, 2].
Hence, it has at most one real solution in [-2, 2].](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F8d88a89c-4743-486c-903a-d25a9887f98a%2Fe52861d0-9886-45eb-8b1a-e68d4e02fa03%2Fksjsizl_processed.png&w=3840&q=75)
Transcribed Image Text:Show that the equation x3 - 17x + c = 0 has at most one solution in the interval [-2, 2].
Let f(x) = x - 17x + c for x in [-2, 2]. If f has two real solutions a and b in [-2, 2], with a < b, then -Select---
polynomial f is continuous on [a, b] and differentiable on (a, b), -Select--
v. Since the
) implies that there is a number r in (a, b)
such that f'(r) = 0.
Now f'(r) =
. Since r is in (a, b), which is contained in [-2, 2], we have Irl < 2, so r? < 4. It follows that
3r2 - 17 ?v 3 ·4 - 17 = -5 ?v 0. This contradicts f'(r) = 0, so the given equation cannot have two real solutions in [-2, 2].
Hence, it has at most one real solution in [-2, 2].
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning