shear strength shear strength (su) of 120 kPa. Given the depth of bottom of the mat D₁ = 3.0 m, (a) determine the factor of safety for bearing capacity (Use Fs = quq where the generalized bearing capacity equation qu = c'NcFesFca Fci+q'NqFas Fad Fai + 0.5yBNy FysFydFyi). (b) determine the factor of safety against bearing capacity by adopting the concept of compensated foundation (Use Fs = qnet(u)/(q-Di)). (c) if a fully compensated foundation, i.e. no net increase of stress on the soil at the bottom of the mat foundation, is desired, what would be the depth of the foundation?

Structural Analysis
6th Edition
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:KASSIMALI, Aslam.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
100%

I need detailed explanation solving this problem from Foundation, please.

A mat foundation with a flat slab has dimensions of 15 m × 25 m. The total load of the building is 240 × 103 kN.
The mat foundation is situated in a thick clay layer with a saturated unit weight of 18.5 kN/m³ and an undrained
shear strength shear strength (su) of 120 kPa. Given the depth of bottom of the mat Dƒ = 3.0 m, (a) determine the
factor of safety for bearing capacity (Use Fs = qulaq where the generalized bearing capacity equation qu =
c'NcFcsFca Fci + q'NqFqsFqaFqi + 0.5yBNyFysFyaFyi). (b) determine the factor of safety against bearing capacity by
adopting the concept of compensated foundation (Use Fs = qnet(u)(q-D)). (c) if a fully compensated foundation, i.e.,
no net increase of stress on the soil at the bottom of the mat foundation, is desired, what would be the depth of the
foundation?
Transcribed Image Text:A mat foundation with a flat slab has dimensions of 15 m × 25 m. The total load of the building is 240 × 103 kN. The mat foundation is situated in a thick clay layer with a saturated unit weight of 18.5 kN/m³ and an undrained shear strength shear strength (su) of 120 kPa. Given the depth of bottom of the mat Dƒ = 3.0 m, (a) determine the factor of safety for bearing capacity (Use Fs = qulaq where the generalized bearing capacity equation qu = c'NcFcsFca Fci + q'NqFqsFqaFqi + 0.5yBNyFysFyaFyi). (b) determine the factor of safety against bearing capacity by adopting the concept of compensated foundation (Use Fs = qnet(u)(q-D)). (c) if a fully compensated foundation, i.e., no net increase of stress on the soil at the bottom of the mat foundation, is desired, what would be the depth of the foundation?
9net(u) = quq = 5.14c1+ (1+0.4²)
General bearing capacity equation qu= c'NcFesFcaFci + q'NaFas FaaFai +0.5yBNyFysFya Fyi
Shape factors by De Depth factors by Hansen (1970)
Beer (1970)
B No
Fcs = 1+ N
Fas = 1 +
Fys
0
1
2
3
4
5
6
7
8
9
10
B
= 10.4(
Ne
5.14
5.38
5.63
5.90
6.19
6.49
6.81
7.16
7.53
7.92
8.35
tan o'
0.195B
L
TABLE 6.2 Bearing Capacity Factors From Eqs. (6.30), (6.29), and (6.31)
N₁
Na
1.00
2.71
1.09
2.97
1.20
3.26
1.31
3.59
1.43
3.94
1.57
4.34
1.72
1.88
2.06
2.25
2.47
Ne
16.88
18.05
19.32
20.72
22.25
23.94
25.80
27.86
30.14
32.67
35.49
38.64
42.16
46.12
50.59
Fad = 1 + 2 tano (1 — sin y)²:
qd
B
Fyd = 1
Fcd = 1 + 0.4(
Ny
0.00
0.07
0.15
0.24
0.34
0.45
0.57
0.71
0.86
1.03
1.22
7.13
8.20
9.44
10.88
12.54
14.47
16.72
19.34
22.40
25.99
30.22
35.19
41.06
48.03
56.31
=
11
12
13
14
15
16
17
18
19
20
21
TABLE 6.2 Bearing Capacity Factors From Eqs. (6.30), (6.29), and (6.31) (Continued)
φ'
Na
$'
Na
22
7.82
42.92
23
8.66
48.93
24
9.60
55.96
25
10.66
64.20
26
11.85
73.90
27
13.20
85.38
28
14.72
99.02
29
16.44
115.31
30
18.40
134.88
31
20.63
158.51
32
23.18
187.21
33
26.09
222.31
34
29.44
265.51
35
33.30
319.07
36
37.75
37
38
39
40
41
42
43
44
45
46
47
48
49
50
Ne
8.80
9.28
9.81
10.37
10.98
11.63
12.34
13.10
13.93
14.83
15.82
For saturated clay: p
For a method: fav = acu
For method: f = (₁ +2c₂)
Ne
55.63
61.35
67.87
75.31
83.86
93.71
105.11
118.37
133.88
152.10
173.64
199.26
229.93
266.89
Apqp = ApCu Nc
4.77
5.26
5.80
6.40
7.07
Ny
1.44
1.69
1.97
2.29
2.65
3.06
3.53
4.07
4.68
5.39
6.20
(continued)
Ny
66.19
78.03
92.25
109.41
130.22
155.55
186.54
224.64
271.76
330.35
403.67
496.01
613.16
762.89
Inclination
factors
by
Meyerhof (1963) and Hanna
and Meyerhof (1981)
Fci = Fai = (1-2
Fyi = (1 - B²
Bº
Ne 9 for p = 0
TABLE 12.10 Variation of A with Pile
Embedment Length, L
Embedment
length, L (m)
0
5
10
15
20
25
30
35
40
50
60
70
80
90
Coyle and Castello (1981):
Embedment ratio, L/D
0
10
20
30
40
50
60
70
Qp = q'N₁ Ap
10
T
T
T
T
T
e
$'
Bearing capacity factor, N
20
32° 36°
= 30°
34°
λ
0.5
0.336
0.245
0.200
0.173
0.150
0.136
0.132
0.127
0.118
0.113
0.110
0.110
0.110
38°
TABLE 12.11 Variation of a (Interpo-
lated Values Based on
Terzaghi et al., 1996)
40°
Cu
Pa
≤0.1
0.2
0.3
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.4
2.8
40 60 80 100 200
Note:
Pa
≈100 kN/m²
Qs
= atmospheric pressure
Embedment ratio, L/D
=
: (Ko'tan 8')pL
0.15 0.2
0
5
10
15
20
25
30
a
35
36
1.00
0.92
0.82
0.74
0.62
0.54
0.48
0.42
0.40
0.38
0.36
0.35
0.34
0.34
Earth pressure coefficient, K
1.0
$'
30°
31°
32°
33°
8=0.80'
2
34°
35⁰
36°
5
Transcribed Image Text:9net(u) = quq = 5.14c1+ (1+0.4²) General bearing capacity equation qu= c'NcFesFcaFci + q'NaFas FaaFai +0.5yBNyFysFya Fyi Shape factors by De Depth factors by Hansen (1970) Beer (1970) B No Fcs = 1+ N Fas = 1 + Fys 0 1 2 3 4 5 6 7 8 9 10 B = 10.4( Ne 5.14 5.38 5.63 5.90 6.19 6.49 6.81 7.16 7.53 7.92 8.35 tan o' 0.195B L TABLE 6.2 Bearing Capacity Factors From Eqs. (6.30), (6.29), and (6.31) N₁ Na 1.00 2.71 1.09 2.97 1.20 3.26 1.31 3.59 1.43 3.94 1.57 4.34 1.72 1.88 2.06 2.25 2.47 Ne 16.88 18.05 19.32 20.72 22.25 23.94 25.80 27.86 30.14 32.67 35.49 38.64 42.16 46.12 50.59 Fad = 1 + 2 tano (1 — sin y)²: qd B Fyd = 1 Fcd = 1 + 0.4( Ny 0.00 0.07 0.15 0.24 0.34 0.45 0.57 0.71 0.86 1.03 1.22 7.13 8.20 9.44 10.88 12.54 14.47 16.72 19.34 22.40 25.99 30.22 35.19 41.06 48.03 56.31 = 11 12 13 14 15 16 17 18 19 20 21 TABLE 6.2 Bearing Capacity Factors From Eqs. (6.30), (6.29), and (6.31) (Continued) φ' Na $' Na 22 7.82 42.92 23 8.66 48.93 24 9.60 55.96 25 10.66 64.20 26 11.85 73.90 27 13.20 85.38 28 14.72 99.02 29 16.44 115.31 30 18.40 134.88 31 20.63 158.51 32 23.18 187.21 33 26.09 222.31 34 29.44 265.51 35 33.30 319.07 36 37.75 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Ne 8.80 9.28 9.81 10.37 10.98 11.63 12.34 13.10 13.93 14.83 15.82 For saturated clay: p For a method: fav = acu For method: f = (₁ +2c₂) Ne 55.63 61.35 67.87 75.31 83.86 93.71 105.11 118.37 133.88 152.10 173.64 199.26 229.93 266.89 Apqp = ApCu Nc 4.77 5.26 5.80 6.40 7.07 Ny 1.44 1.69 1.97 2.29 2.65 3.06 3.53 4.07 4.68 5.39 6.20 (continued) Ny 66.19 78.03 92.25 109.41 130.22 155.55 186.54 224.64 271.76 330.35 403.67 496.01 613.16 762.89 Inclination factors by Meyerhof (1963) and Hanna and Meyerhof (1981) Fci = Fai = (1-2 Fyi = (1 - B² Bº Ne 9 for p = 0 TABLE 12.10 Variation of A with Pile Embedment Length, L Embedment length, L (m) 0 5 10 15 20 25 30 35 40 50 60 70 80 90 Coyle and Castello (1981): Embedment ratio, L/D 0 10 20 30 40 50 60 70 Qp = q'N₁ Ap 10 T T T T T e $' Bearing capacity factor, N 20 32° 36° = 30° 34° λ 0.5 0.336 0.245 0.200 0.173 0.150 0.136 0.132 0.127 0.118 0.113 0.110 0.110 0.110 38° TABLE 12.11 Variation of a (Interpo- lated Values Based on Terzaghi et al., 1996) 40° Cu Pa ≤0.1 0.2 0.3 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.4 2.8 40 60 80 100 200 Note: Pa ≈100 kN/m² Qs = atmospheric pressure Embedment ratio, L/D = : (Ko'tan 8')pL 0.15 0.2 0 5 10 15 20 25 30 a 35 36 1.00 0.92 0.82 0.74 0.62 0.54 0.48 0.42 0.40 0.38 0.36 0.35 0.34 0.34 Earth pressure coefficient, K 1.0 $' 30° 31° 32° 33° 8=0.80' 2 34° 35⁰ 36° 5
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Types of Foundation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Structural Analysis
Structural Analysis
Civil Engineering
ISBN:
9781337630931
Author:
KASSIMALI, Aslam.
Publisher:
Cengage,
Structural Analysis (10th Edition)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Sustainable Energy
Sustainable Energy
Civil Engineering
ISBN:
9781337551663
Author:
DUNLAP, Richard A.
Publisher:
Cengage,
Traffic and Highway Engineering
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning