s"F(s) – s-f(0) – s"-2 f" (0) – x' = -5x - 8y pts) Solve the initial value problemy' = x+y by using eigenvalue solutions. (x(0) = -1, y(0) = 1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Table of Laplace Transforms
Lự)} = e-"F(e)dt = F(s)
1
e f(e)
F(s-a)
s>0
10.
t". n= 1,2,3
Heaviside/Step Function
• s>0
n!
11.
(t) = u(t - a)
VE
12.
u(t)f(t-a)
eF(s)
232
eat
Convolution
F(s)G(s)
13.
f g= f()s(t – u)du
S-a
OR LUO) Le()}
fe#f(t)dt
1-e
sin bt
f(e +T) = f(t)
14.
s2 + b2
Dirac Delta Function
cos bt
+ h2 5 >0
15.
6(t -c)
(-1)=*(F(s))
ds"
fO .
n = 1,2,3
F(u)du
16.
F(s)
f'(t)
sF(s) – f(0)
17.
S"F(s) –s-1f (0) – s-2r(0) –.- sf(a-2 (0) -f"(0)
- sf=-2 (0) – fla-1" 0)
(x' = -5x – 8y
pts) Solve the initial value problemy' = x+y
by using eigenvalue solutions.
(x(0) = -1, y(0) = 1
Transcribed Image Text:Table of Laplace Transforms Lự)} = e-"F(e)dt = F(s) 1 e f(e) F(s-a) s>0 10. t". n= 1,2,3 Heaviside/Step Function • s>0 n! 11. (t) = u(t - a) VE 12. u(t)f(t-a) eF(s) 232 eat Convolution F(s)G(s) 13. f g= f()s(t – u)du S-a OR LUO) Le()} fe#f(t)dt 1-e sin bt f(e +T) = f(t) 14. s2 + b2 Dirac Delta Function cos bt + h2 5 >0 15. 6(t -c) (-1)=*(F(s)) ds" fO . n = 1,2,3 F(u)du 16. F(s) f'(t) sF(s) – f(0) 17. S"F(s) –s-1f (0) – s-2r(0) –.- sf(a-2 (0) -f"(0) - sf=-2 (0) – fla-1" 0) (x' = -5x – 8y pts) Solve the initial value problemy' = x+y by using eigenvalue solutions. (x(0) = -1, y(0) = 1
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,