Several electrons move at speed 8.50 × 105 m/s in a uniform magnetic field with magnitude B = 0.380 T directed downward. Find the magnetic force on the electron at point c. Enter a positive value if the direction of magnetic force is out of the page and enter a negative value if the direction of magnetic force is in to the page.

icon
Related questions
Question

Several electrons move at speed 8.50 × 105 m/s in a uniform magnetic field with magnitude B = 0.380 T directed downward. Find the magnetic force on the electron at point c. Enter a positive value if the direction of magnetic force is out of the page and enter a negative value if the direction of magnetic force is in to the page.

 

The image illustrates the motion of particles in a magnetic field, represented by orange lines with arrows pointing in the same direction, indicating the field's uniform direction. 

Points labeled \( a, b, c, d, \) and \( e \) mark specific positions within this field. 

- Vectors (red arrows) show the direction and angle of movement relative to the magnetic field lines.
- At position \( a \), the vector makes a 20.0° angle from the horizontal.
- An identical situation occurs at position \( d \).
- At position \( b \), the vector also forms a 20.0° angle from the horizontal.
- At position \( c \), the vector forms a 30.0° angle from the horizontal.
- Position \( e \) shows a vector perpendicular to the field lines, indicating direct opposition or alignment.

Each vector’s angle relative to the field suggests varying influences on a charged particle, such as changes in velocity due to the Lorentz force, which depends on both angle and magnitude of the velocity and magnetic field. 

This diagram is essential in understanding how charged particles behave when influenced by magnetic fields, showcasing fundamental electromagnetism concepts.
Transcribed Image Text:The image illustrates the motion of particles in a magnetic field, represented by orange lines with arrows pointing in the same direction, indicating the field's uniform direction. Points labeled \( a, b, c, d, \) and \( e \) mark specific positions within this field. - Vectors (red arrows) show the direction and angle of movement relative to the magnetic field lines. - At position \( a \), the vector makes a 20.0° angle from the horizontal. - An identical situation occurs at position \( d \). - At position \( b \), the vector also forms a 20.0° angle from the horizontal. - At position \( c \), the vector forms a 30.0° angle from the horizontal. - Position \( e \) shows a vector perpendicular to the field lines, indicating direct opposition or alignment. Each vector’s angle relative to the field suggests varying influences on a charged particle, such as changes in velocity due to the Lorentz force, which depends on both angle and magnitude of the velocity and magnetic field. This diagram is essential in understanding how charged particles behave when influenced by magnetic fields, showcasing fundamental electromagnetism concepts.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer