Setup the Riemann sum = [²³x²³ dx lim n→∞0 [(2+[(3*k)/n])^3]*(3/n) n Entered k=1 [*f(x) dx = f(x) dx = limf(x)Ax for the given integral. k=1 n→∞ (2+3k/n)^3*(3/n) n Answer Preview 3 3k 3 (2 + ³k ) ²2/1/2 n n
Setup the Riemann sum = [²³x²³ dx lim n→∞0 [(2+[(3*k)/n])^3]*(3/n) n Entered k=1 [*f(x) dx = f(x) dx = limf(x)Ax for the given integral. k=1 n→∞ (2+3k/n)^3*(3/n) n Answer Preview 3 3k 3 (2 + ³k ) ²2/1/2 n n
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Hey please solve thisc correctly.
(2+3k/n)^3*(3/n) this is not right answer. I want right answer
![The image contains a setup for evaluating a definite integral using Riemann sums.
**Entered:**
\[
[(2+[(3*k)/n])^3] \times (3/n)
\]
**Answer Preview:**
\[
\left(2 + \frac{3k}{n}\right)^3 \times \frac{3}{n}
\]
**Instructions:**
(a) Setup the Riemann sum for the given integral:
\[
\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(\bar{x}_k) \Delta x
\]
**Example Integral:**
\[
\int_{2}^{5} x^3 \, dx = \lim_{n \to \infty} \sum_{k=1}^{n} \left(2 + 3k/n\right)^3 \times (3/n)
\]
This explains how to use Riemann sums to approximate the integral from 2 to 5 of the function \(x^3\). The expression inside the sum represents a function value at a sample point within each subinterval, multiplied by the width of the subinterval, \(\Delta x\). This sum approaches the definite integral as the number of subintervals, \(n\), approaches infinity.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F0d5d9ef2-562b-49f4-9963-a1c4e47b1118%2F26485d87-469f-45eb-ae60-26c1b80e6b19%2Fwdx0g0h_processed.png&w=3840&q=75)
Transcribed Image Text:The image contains a setup for evaluating a definite integral using Riemann sums.
**Entered:**
\[
[(2+[(3*k)/n])^3] \times (3/n)
\]
**Answer Preview:**
\[
\left(2 + \frac{3k}{n}\right)^3 \times \frac{3}{n}
\]
**Instructions:**
(a) Setup the Riemann sum for the given integral:
\[
\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(\bar{x}_k) \Delta x
\]
**Example Integral:**
\[
\int_{2}^{5} x^3 \, dx = \lim_{n \to \infty} \sum_{k=1}^{n} \left(2 + 3k/n\right)^3 \times (3/n)
\]
This explains how to use Riemann sums to approximate the integral from 2 to 5 of the function \(x^3\). The expression inside the sum represents a function value at a sample point within each subinterval, multiplied by the width of the subinterval, \(\Delta x\). This sum approaches the definite integral as the number of subintervals, \(n\), approaches infinity.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

