selected. If the number of college graduates in the sample is anywhere from 3 to 7, we The proportion of adults living in a small town who are college graduates is estimated to be p= 0.5. To test this hypothesis, a random sample of 10 adults shall not reject the null hypothesis that p = 0.5; otherwise, we shall conclude that p#0.5. Complete parts (a) through (c) below. Click here to view page 1 of the table of binomial probability sums. Click here to view page 2 of the table of binomial probability sums. Click here to view page 3 of the table of binomial probability sums. (a) Evaluate a assuming that p= 0.5. Use the binomial distribution.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
The proportion of adults living in a small town who are college graduates is estimated to be p = 0.5. To test this hypothesis, a random sample of 10 adults is selected. If the number of college graduates in the sample is anywhere from 3 to 7, we
shall not reject the null hypothesis that p = 0.5; otherwise, we shall conclude that p + 0.5. Complete parts (a) through (c) below.
Click here to view page 1 of the table of binomial probability sums.
Click here to view page 2 of the table of binomial probability sums.
Click here to view page 3 of the table of binomial probability sums.
(a) Evaluate a assuming that p = 0.5. Use the binomial distribution.
(Round to four decimal places as needed.)
Transcribed Image Text:The proportion of adults living in a small town who are college graduates is estimated to be p = 0.5. To test this hypothesis, a random sample of 10 adults is selected. If the number of college graduates in the sample is anywhere from 3 to 7, we shall not reject the null hypothesis that p = 0.5; otherwise, we shall conclude that p + 0.5. Complete parts (a) through (c) below. Click here to view page 1 of the table of binomial probability sums. Click here to view page 2 of the table of binomial probability sums. Click here to view page 3 of the table of binomial probability sums. (a) Evaluate a assuming that p = 0.5. Use the binomial distribution. (Round to four decimal places as needed.)
Binomial Probability Sums b(1; n, p)
2-0
n r
0.10
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.4305
0.8131
8.
0.1678
0.5033
0.1001
0.0576
0.0168
0.0039
0.0007
0.0001
0.0000
1
0.3671
0.2553
0.1064
0.0352
0.0085
0.0013
0.0001
0.9619
0.7969
0.9437
0.6785
0.5518
0.3154
0.1445
0.0498
0.0113
0.0012
0.0000
0.9950
0.8862
0.9727
0.8059
0.5941
0.3633
0.1737
0.0580
0.0104
0.0004
0.9996
0.9896
0.9420
0.6367
0.4059
0.8263
0.9502
0.1941
0.0563
0.2031
0.4967
4.
0.0050
1.0000
0,9988
0,9958
0,9887
0.8555
0.6846
0.4482
0.0381
0.9999
1.0000
0.8936
0.7447
0.9424
6
0.9996
0.9987
0.9999
1.0000
0.9915
0.9993
1.0000
0.9648
0.9961
0.1869
0.5695
1.0000
1.0000
0.8322
1.0000
7
0.9832
1.0000
1.0000
1.0000
0.0404
0.1960
0.0020
0.0195
0.1342
0.0000
0.0004
0.3874
0.0751
0.3003
0.0101
0.0705
0.0003
0.7748
0.4362
0.0038
0.0000
0.0043
0.0253
0.0988
0.2703
0.7382
0.4628 0.2318 0.0898
0.7297
0.9470
0.6007
0.0250
0.0003
0.0000
3
0.9917
0.9144
0.8343
0.4826
0.2539
0.0994
0.2666
0.5174
0.0031
0.0001
0.9991
0.9999
4.
0.9804
0.9511
0.9012
0.7334
0.5000
0.0196
0.0009
0.9969
0.9900
0.9747
0.9006
0.7461
0.0856
0.0083
1.0000
0.9102
0.9997
1.0000
0.9987
0.9957
0.9750
0.7682
0.5372
0.2618
0.0530
0,9805
0.9980
7
0,9999
0.9996
0.9962
0.9295
0.8040
0.5638
0.2252
1.0000
1.0000
0.9997
0.9899
0.9596
0.8658
0.6126
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
10
0.3487
0.1074
0.0563
0.0282
0.0060
0.0010
0.0001
0.0000
0.0000
0.0001
0.7361
0.3758
0.2440
0.1493 0.0464
0.3828 0.1673 0.0547
0.3823
0.6331
1
0.0107
0.0017
0.0001
0.9298
0.9872
0.9984
0.6778 0.5256
0.7759
0.8791
0.9672
0.0123
0.0016
3
0.6496
0.1719
0.0548
0.0106
0.0009
0.0000
0.9219
0.8497
0.3770
0.1662
0.0473
0.0064
0.0001
0.9999
0.9936
0.9803
0.9527
0.8338
0.6230
0.3669
0.1503
0.0328
0.0016
6
1.0000
0.9452
0.8281
0.9991
0.9999
0.9965
0.9996
0.9894
0.9984
0.6177
0.8327
0.3504
0.1209
0.0128
7
0.9877
0.9453
0.6172
0.3222
0.0702
0.9983
O 0000
0.9893
0 0000
8
1.0000
1.0000
0.9999
0.9536
0 0010
0.8507
0 0718
0.6242
0.2639
O G512
1.0000
Transcribed Image Text:Binomial Probability Sums b(1; n, p) 2-0 n r 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.4305 0.8131 8. 0.1678 0.5033 0.1001 0.0576 0.0168 0.0039 0.0007 0.0001 0.0000 1 0.3671 0.2553 0.1064 0.0352 0.0085 0.0013 0.0001 0.9619 0.7969 0.9437 0.6785 0.5518 0.3154 0.1445 0.0498 0.0113 0.0012 0.0000 0.9950 0.8862 0.9727 0.8059 0.5941 0.3633 0.1737 0.0580 0.0104 0.0004 0.9996 0.9896 0.9420 0.6367 0.4059 0.8263 0.9502 0.1941 0.0563 0.2031 0.4967 4. 0.0050 1.0000 0,9988 0,9958 0,9887 0.8555 0.6846 0.4482 0.0381 0.9999 1.0000 0.8936 0.7447 0.9424 6 0.9996 0.9987 0.9999 1.0000 0.9915 0.9993 1.0000 0.9648 0.9961 0.1869 0.5695 1.0000 1.0000 0.8322 1.0000 7 0.9832 1.0000 1.0000 1.0000 0.0404 0.1960 0.0020 0.0195 0.1342 0.0000 0.0004 0.3874 0.0751 0.3003 0.0101 0.0705 0.0003 0.7748 0.4362 0.0038 0.0000 0.0043 0.0253 0.0988 0.2703 0.7382 0.4628 0.2318 0.0898 0.7297 0.9470 0.6007 0.0250 0.0003 0.0000 3 0.9917 0.9144 0.8343 0.4826 0.2539 0.0994 0.2666 0.5174 0.0031 0.0001 0.9991 0.9999 4. 0.9804 0.9511 0.9012 0.7334 0.5000 0.0196 0.0009 0.9969 0.9900 0.9747 0.9006 0.7461 0.0856 0.0083 1.0000 0.9102 0.9997 1.0000 0.9987 0.9957 0.9750 0.7682 0.5372 0.2618 0.0530 0,9805 0.9980 7 0,9999 0.9996 0.9962 0.9295 0.8040 0.5638 0.2252 1.0000 1.0000 0.9997 0.9899 0.9596 0.8658 0.6126 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 10 0.3487 0.1074 0.0563 0.0282 0.0060 0.0010 0.0001 0.0000 0.0000 0.0001 0.7361 0.3758 0.2440 0.1493 0.0464 0.3828 0.1673 0.0547 0.3823 0.6331 1 0.0107 0.0017 0.0001 0.9298 0.9872 0.9984 0.6778 0.5256 0.7759 0.8791 0.9672 0.0123 0.0016 3 0.6496 0.1719 0.0548 0.0106 0.0009 0.0000 0.9219 0.8497 0.3770 0.1662 0.0473 0.0064 0.0001 0.9999 0.9936 0.9803 0.9527 0.8338 0.6230 0.3669 0.1503 0.0328 0.0016 6 1.0000 0.9452 0.8281 0.9991 0.9999 0.9965 0.9996 0.9894 0.9984 0.6177 0.8327 0.3504 0.1209 0.0128 7 0.9877 0.9453 0.6172 0.3222 0.0702 0.9983 O 0000 0.9893 0 0000 8 1.0000 1.0000 0.9999 0.9536 0 0010 0.8507 0 0718 0.6242 0.2639 O G512 1.0000
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Point Estimation, Limit Theorems, Approximations, and Bounds
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman