Section Section Nuclear radius R = RoA1/3, Ro= 1.2 fm 12.2 Nuclear B=[Nm+ Zm(H)-m(X)]c² 12.3 Qvalue of decay Q=[mx (mx, +m,)]c² 12.6 binding energy X-X' + X Proton Sp=[m(X)+m(H) 12.3 Q value of Q=[m(X)-m(X) - m(He)]c² 12.7 separation -m(xx)]c² alpha decay energy Kinetic energy K = Q(A-4)/A 12.7 Neutron S=[m(X-1)+m 12.3 of alpha separation -m(XN)]c² particle energy Q values of Q = [m(1X)-m(1X)]c², 12.8 Range of mc² = hc/x 12.4 beta decay Q = [m(1X)-m(1X) - 2m.]c² exchanged Recoil in KR = E²/2Mc² 12.9 particle gamma decay Activity a = AN, λ = In 2/11/2 = 0.693/11/2 12.5 Radioactive N = Noe, a = aoe- 12.5 decay law (a) Compute the Coulomb repulsion energy between two nuclei of 160 that just touch at their surfaces. (b) Do the same for two nuclei of 238U. 18.
Section Section Nuclear radius R = RoA1/3, Ro= 1.2 fm 12.2 Nuclear B=[Nm+ Zm(H)-m(X)]c² 12.3 Qvalue of decay Q=[mx (mx, +m,)]c² 12.6 binding energy X-X' + X Proton Sp=[m(X)+m(H) 12.3 Q value of Q=[m(X)-m(X) - m(He)]c² 12.7 separation -m(xx)]c² alpha decay energy Kinetic energy K = Q(A-4)/A 12.7 Neutron S=[m(X-1)+m 12.3 of alpha separation -m(XN)]c² particle energy Q values of Q = [m(1X)-m(1X)]c², 12.8 Range of mc² = hc/x 12.4 beta decay Q = [m(1X)-m(1X) - 2m.]c² exchanged Recoil in KR = E²/2Mc² 12.9 particle gamma decay Activity a = AN, λ = In 2/11/2 = 0.693/11/2 12.5 Radioactive N = Noe, a = aoe- 12.5 decay law (a) Compute the Coulomb repulsion energy between two nuclei of 160 that just touch at their surfaces. (b) Do the same for two nuclei of 238U. 18.
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images